def test_bha_event_horizon(): new_bha = bha.BHA() search_space = search.SearchSpace(n_agents=20, n_iterations=100, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_bha._event_horizon(search_space.agents, search_space.best_agent, 10) assert search_space.best_agent.fit != 0
def test_bha_update_position(): def square(x): return np.sum(x**2) new_function = function.Function(pointer=square) new_bha = bha.BHA() search_space = search.SearchSpace(n_agents=20, n_iterations=100, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) cost = new_bha._update_position(search_space.agents, search_space.best_agent, new_function) assert cost != 0
def test_bha_run(): def square(x): return np.sum(x**2) new_function = function.Function(pointer=square) new_bha = bha.BHA() search_space = search.SearchSpace(n_agents=2, n_iterations=100, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) history = new_bha.run(search_space, new_function) assert len(history.agents) > 0 assert len(history.best_agent) > 0
def test_bha_run(): def square(x): return np.sum(x) def hook(optimizer, space, function): return new_function = function.Function(pointer=square) new_bha = bha.BHA() search_space = search.SearchSpace(n_agents=10, n_iterations=50, n_variables=2, lower_bound=[0, 0], upper_bound=[5, 5]) history = new_bha.run(search_space, new_function, pre_evaluation_hook=hook) assert len(history.agents) > 0 assert len(history.best_agent) > 0 best_fitness = history.best_agent[-1][1] assert best_fitness <= constants.TEST_EPSILON, 'The algorithm bha failed to converge.'
def test_bha_build(): new_bha = bha.BHA() assert new_bha.built == True