예제 #1
0
 def test_no_samples(self):
     data = Orange.data.Table("iris")
     proc = PCADenoising()
     d1 = proc(data[:0])
     newdata = Orange.data.Table(d1.domain, data)
     np.testing.assert_equal(newdata.X, np.nan)
예제 #2
0
    Integrate(methods=Integrate.Simple, limits=[[1100, 1200]]),
    Integrate(methods=Integrate.Baseline, limits=[[1100, 1200]]),
    Integrate(methods=Integrate.PeakMax, limits=[[1100, 1200]]),
    Integrate(methods=Integrate.PeakBaseline, limits=[[1100, 1200]]),
    Integrate(methods=Integrate.PeakAt, limits=[[1100]]),
    Integrate(methods=Integrate.PeakX, limits=[[1100, 1200]]),
    Integrate(methods=Integrate.PeakXBaseline, limits=[[1100, 1200]]),
    RubberbandBaseline(),
    Normalize(method=Normalize.Vector),
    Normalize(method=Normalize.Area, int_method=Integrate.PeakMax, lower=0, upper=10000),
]

# Preprocessors that use groups of input samples to infer
# internal parameters.
PREPROCESSORS_GROUPS_OF_SAMPLES = [
    PCADenoising(components=2),
]

PREPROCESSORS = PREPROCESSORS_INDEPENDENT_SAMPLES + PREPROCESSORS_GROUPS_OF_SAMPLES


def shuffle_attr(data):
    natts = list(data.domain.attributes)
    random.Random(0).shuffle(natts)
    ndomain = Orange.data.Domain(natts, data.domain.class_vars,
                             metas=data.domain.metas)
    return Orange.data.Table(ndomain, data)


def reverse_attr(data):
    natts = reversed(data.domain.attributes)