def test_predict(self): model = VAR(2) model.fit(data) forecast, ci95_low, ci95_high = model.predict(10) self.assertTrue( np.logical_and(forecast > ci95_low, forecast < ci95_high).all())
def test_predict_as_table(self): model = VAR(2) model.fit(data) forecast = model.predict(10, as_table=True) self.assertEqual(len(forecast.domain.variables), 2 * (1 + 2))
super().closeEvent(event) def closeContext(self) -> None: """ Gather configs in contextVariables and close context. """ if not self.features: # only close in case of when features are not present if they are # feature selection is defined by the input and context should # not have impact attrs, is_logit = [], [] for config in self.configs: attrs.append(config.get_selection()) is_logit.append(config.is_logarithmic) self.attrs = attrs self.is_logit = is_logit super().closeContext() if __name__ == "__main__": from orangecontrib.timeseries import ARIMA, VAR airpassengers = Timeseries.from_file('airpassengers') msft = airpassengers.interp() model1 = ARIMA((3, 1, 1)).fit(airpassengers) model2 = VAR(4).fit(msft) ow = WidgetPreview(OWLineChart) ow.run(set_data=airpassengers, set_forecast=[(model1.predict(10, as_table=True), 0), (model2.predict(10, as_table=True), 1)])