def get_keplerian_parameters(spacecraft_state, anomaly_type="TRUE"): """ Given a SpaceCraftState object this function computes the keplerian orbit parameters Note: parameter values may change but they'll define the same orbit Args: spacecraft_state (SpaceCraftState): SpaceCraftState orekit object that has an orbit attribute anomaly_type (string; "MEAN" or "TRUE"): tells to return true or mean anomaly, defaults to TRUE Returns: dict: dictionary of parameters containg eccentricity, semimajor_axis, inclination, perigee argument, right ascension of ascending node, anomaly, anomaly_type, and orbit_update_date """ parameters = dict() new_orbit = KeplerianOrbit(spacecraft_state.getOrbit()) parameters["semimajor_axis"] = new_orbit.getA() parameters["eccentricity"] = new_orbit.getE() parameters["inclination"] = new_orbit.getI() parameters["perigee_argument"] = new_orbit.getPerigeeArgument() parameters[ "right_ascension_of_ascending_node"] = new_orbit.getRightAscensionOfAscendingNode( ) parameters["orbit_update_date"] = new_orbit.getDate().toString() parameters["frame"] = frame_to_string(spacecraft_state.getFrame()) if (anomaly_type == "MEAN"): parameters["anomaly"] = new_orbit.getMeanAnomaly() parameters["anomaly_type"] = "MEAN" else: parameters["anomaly"] = new_orbit.getTrueAnomaly() parameters["anomaly_type"] = "TRUE" return parameters
def validate_rv2coe(): # Orbit initial state vectors rx_0, ry_0, rz_0 = -6045.0e3, -3490.0e3, 2500.0e3 vx_0, vy_0, vz_0 = -3.457e3, 6.618e3, 2.533e3 # Build the initial Orekit orbit k = C.IAU_2015_NOMINAL_EARTH_GM r0_vec = Vector3D(rx_0, ry_0, rz_0) v0_vec = Vector3D(vx_0, vy_0, vz_0) rv_0 = PVCoordinates(r0_vec, v0_vec) epoch_00 = AbsoluteDate.J2000_EPOCH gcrf_frame = FramesFactory.getGCRF() ss0_orekit = KeplerianOrbit(rv_0, gcrf_frame, epoch_00, k) # Build poliastro orbit r0_vec = [rx_0, ry_0, rz_0] * u.m v0_vec = [vx_0, vy_0, vz_0] * u.m / u.s ss0_poliastro = Orbit.from_vectors(Earth, r0_vec, v0_vec) # Orekit bounds COE angular magnitudes between [-pi, +pi]. Let us define a # converter function to map values between [0, +2pi] def unbound_angle(angle): """ Bound angle between [0, +2pi] """ if -np.pi <= angle <= 0.0: angle += 2 * np.pi return angle # Map angles orekit_raan = unbound_angle(ss0_orekit.getRightAscensionOfAscendingNode()) orekit_argp = unbound_angle(ss0_orekit.getPerigeeArgument()) orekit_nu = unbound_angle(ss0_orekit.getTrueAnomaly()) # Assert classical orbital elements assert_quantity_allclose(ss0_poliastro.a, ss0_orekit.getA() * u.m, rtol=1e-6) assert_quantity_allclose(ss0_poliastro.ecc, ss0_orekit.getE() * u.one, rtol=1e-6) assert_quantity_allclose(ss0_poliastro.inc, ss0_orekit.getI() * u.rad, rtol=1e-6) assert_quantity_allclose(ss0_poliastro.raan, orekit_raan * u.rad, rtol=1e-6) assert_quantity_allclose(ss0_poliastro.argp, orekit_argp * u.rad, rtol=1e-6) assert_quantity_allclose(ss0_poliastro.nu, orekit_nu * u.rad, rtol=1e-6)
def osc_elems_transformation_ore(self, other, dir): self._orekit_lock.acquire() self.load_orekit() KepOrbElem.vm.attachCurrentThread() utc = TimeScalesFactory.getUTC() orekit_date = AbsoluteDate(2017, 1, 1, 12, 1, 1.0, utc) inertialFrame = FramesFactory.getEME2000() a = float(other.a) e = float(other.e) i = float(other.i) w = float(other.w) O = float(other.O) v = float(other.v) initialOrbit = KeplerianOrbit(a * 1000.0, e, i, w, O, v, PositionAngle.TRUE, inertialFrame, orekit_date, Constants.mu_earth * 1e9) initialState = SpacecraftState(initialOrbit, 1.0) #zonal_forces= DSSTZonal(provider,2,1,5) zonal_forces = DSSTZonal(KepOrbElem.provider, 6, 4, 6) forces = ArrayList() forces.add(zonal_forces) try: equinoctial = None if dir: equinoctial = DSSTPropagator.computeMeanState( initialState, None, forces) else: equinoctial = DSSTPropagator.computeOsculatingState( initialState, None, forces) newOrbit = KeplerianOrbit(equinoctial.getOrbit()) self.a = newOrbit.getA() / 1000.0 self.e = newOrbit.getE() self.i = newOrbit.getI() self.w = newOrbit.getPerigeeArgument() self.O = newOrbit.getRightAscensionOfAscendingNode() self.v = newOrbit.getAnomaly(PositionAngle.TRUE) # correct ranges if self.i < 0: self.i += 2 * np.pi if self.w < 0: self.w += 2 * np.pi if self.O < 0: self.O += 2 * np.pi if self.v < 0: self.v += 2 * np.pi finally: self._orekit_lock.release()
def validate_3D_hohmann(): # Initial orbit state vectors, final radius and time of flight # This orbit has an inclination of 22.30 [deg] so the maneuver will not be # applied on an equatorial orbit. See associated GMAT script: # gmat_validate_hohmann3D.script rx_0, ry_0, rz_0 = 7200e3, -1000.0e3, 0.0 vx_0, vy_0, vz_0 = 0.0, 8.0e3, 3.25e3 rf_norm = 35781.35e3 tof = 19800.00 # Build the initial Orekit orbit k = C.IAU_2015_NOMINAL_EARTH_GM r0_vec = Vector3D(rx_0, ry_0, rz_0) v0_vec = Vector3D(vx_0, vy_0, vz_0) rv_0 = PVCoordinates(r0_vec, v0_vec) epoch_00 = AbsoluteDate.J2000_EPOCH gcrf_frame = FramesFactory.getGCRF() ss_0 = KeplerianOrbit(rv_0, gcrf_frame, epoch_00, k) # Final desired orbit radius and auxiliary variables a_0, ecc_0 = ss_0.getA(), ss_0.getE() rp_norm = a_0 * (1 - ecc_0) vp_norm = np.sqrt(2 * k / rp_norm - k / a_0) a_trans = (rp_norm + rf_norm) / 2 # Compute the magnitude of Hohmann's deltaV dv_a = np.sqrt(2 * k / rp_norm - k / a_trans) - vp_norm dv_b = np.sqrt(k / rf_norm) - np.sqrt(2 * k / rf_norm - k / a_trans) # Convert previous magnitudes into vectors within the TNW frame, which # is aligned with local velocity vector dVa_vec, dVb_vec = [ Vector3D(float(dV), float(0), float(0)) for dV in (dv_a, dv_b) ] # Local orbit frame: X-axis aligned with velocity, Z-axis towards momentum attitude_provider = LofOffset(gcrf_frame, LOFType.TNW) # Setup impulse triggers; default apside detector stops on increasing g # function (aka at perigee) at_apoapsis = ApsideDetector(ss_0).withHandler(StopOnDecreasing()) at_periapsis = ApsideDetector(ss_0) # Build the impulsive maneuvers; ISP is only related to fuel mass cost ISP = float(300) imp_A = ImpulseManeuver(at_periapsis, attitude_provider, dVa_vec, ISP) imp_B = ImpulseManeuver(at_apoapsis, attitude_provider, dVb_vec, ISP) # Generate the propagator and add the maneuvers propagator = KeplerianPropagator(ss_0, attitude_provider) propagator.addEventDetector(imp_A) propagator.addEventDetector(imp_B) # Apply the maneuver by propagating the orbit epoch_ff = epoch_00.shiftedBy(tof) rv_f = propagator.propagate(epoch_ff).getPVCoordinates(gcrf_frame) # Retrieve orekit final state vectors r_orekit, v_orekit = ( rv_f.getPosition().toArray() * u.m, rv_f.getVelocity().toArray() * u.m / u.s, ) # Build initial poliastro orbit and apply the maneuver r0_vec = [rx_0, ry_0, rz_0] * u.m v0_vec = [vx_0, vy_0, vz_0] * u.m / u.s ss0_poliastro = Orbit.from_vectors(Earth, r0_vec, v0_vec) man_poliastro = Maneuver.hohmann(ss0_poliastro, rf_norm * u.m) # Retrieve propagation time after maneuver has been applied tof_prop = tof - man_poliastro.get_total_time().to(u.s).value ssf_poliastro = ss0_poliastro.apply_maneuver(man_poliastro).propagate( tof_prop * u.s) # Retrieve poliastro final state vectors r_poliastro, v_poliastro = ssf_poliastro.rv() # Assert final state vectors assert_quantity_allclose(r_poliastro, r_orekit, rtol=1e-6) assert_quantity_allclose(v_poliastro, v_orekit, rtol=1e-6)