def logisticregression(samplerecords, lowage, upage,agetype ): lstrecords = getsample(samplerecords, lowage, upage, agetype ) prewt = orange.FloatVariable('PREPREGNANCYWEIGHT') motherbmi = orange.FloatVariable('MOTHERPREPREGNANCYBMI') #gestWtGain = orange.FloatVariable('NETGESTATIONWEIGHTGAIN') gestWtGainRate = orange.FloatVariable('GESTATIONWEIGHTGAINRATE') wtdelivery = orange.FloatVariable('WEIGHTATDELIVERY') bweight = orange.FloatVariable('BIRTHWEIGHT') ethinicity = orange.EnumVariable('MOTHERETHINICITY',values = ['BL','WH', 'AS', 'HI', 'AI','UN']) obesity = orange.EnumVariable('OBESITY',values = ['1','0']) classAttributes = [prewt,motherbmi, gestWtGainRate,wtdelivery, bweight,ethinicity] domain = orange.Domain(classAttributes, obesity) ft = getallfeatures(lstrecords,domain,lowage, upage,agetype) data = orange.ExampleTable(domain, ft) countvariousattributes(data) lr = orngLR.LogRegLearner(data, removeSingular=1) TP = TN = FP = FN = 0 for ex in data: if ex.getclass() == '1': if lr(ex) == '1': TP = TP +1 else: FN = FN + 1 elif ex.getclass() == '0': if lr(ex) == '0': TN = TN +1 else: FP = FP + 1 countNumberOfObese(lstrecords, lowage,upage, agetype) orngLR.printOUT(lr) print TP, ' ', FP , ' ', TN , ' ', FN
# Description: Demonstrates the use of logistic regression # Category: classification, logistic regression # Classes: LogRegLearner # Uses: titanic.tab import orange import orngLR data = orange.ExampleTable("titanic") lr = orngLR.LogRegLearner(data) correct = 0 for ex in data: if lr(ex) == ex.getclass(): correct += 1 print "Classification accuracy:", correct/len(data) orngLR.printOUT(lr)
# Description: Demonstrates the use of logistic regression # Category: classification, logistic regression # Classes: LogRegLearner # Uses: titanic.tab import orange import orngLR data = orange.ExampleTable("titanic") lr = orngLR.LogRegLearner(data) correct = 0 for ex in data: if lr(ex) == ex.getclass(): correct += 1 print "Classification accuracy:", correct / len(data) orngLR.printOUT(lr)