unlensed = mg.get_map() noise_map = ng.get_map() lensed = enlensing.displace_map(unlensed, alpha_pix, order=lens_order) tot_beamed = maps.filter_map(lensed,kbeam) #+ fg_true stamp = tot_beamed + noise_map if task==0: io.plot_img(unlensed,pout_dir + "0_unlensed.png") io.plot_img(lensed,pout_dir + "1_lensed.png") io.plot_img(fg,pout_dir + "2_fg.png") io.plot_img(stamp,pout_dir + "3_tot.png") # Bayesian totlnlikes = [] for k,kamp in enumerate(bkamps): lnlike = maps.get_lnlike(cinvs[k],stamp) + logdets[k] totlnlike = lnlike #+ lnprior[k] totlnlikes.append(totlnlike) nlnlikes = -0.5*np.array(totlnlikes) mstats.add_to_stats("totlikes",nlnlikes) # lnlikes2d = np.zeros((bkamps.size,famps.size)) # for k,kamp in enumerate(bkamps): # for j,famp in enumerate(famps): # cinv_updated, det_updated = cupdater.get_cinv(k,famp) # lnlike = maps.get_lnlike(cinv_updated,stamp) + det_updated # lnlikes2d[k,j] = lnlike # mstats.add_to_stack("lnlike2d",-0.5*lnlikes2d)
enlensing.displace_map(unlensed.copy(), alpha_pix, order=lens_order), kbeam) fdownsampled = enmap.enmap(resample.resample_fft(lensed, bshape), bwcs) stamp = fdownsampled + noise_map #cutout = lensed + noise_map cutout = stamp[int(bshape[0] / 2. - shape[0] / 2.):int(bshape[0] / 2. + shape[0] / 2.), int(bshape[0] / 2. - shape[0] / 2.):int(bshape[0] / 2. + shape[0] / 2.)] # print(cinvs[k].shape,cutout.shape) totlnlikes = [] for k, kamp in enumerate(kamps): lnlike = maps.get_lnlike(cinvs[k], cutout) + logdets[k] totlnlike = lnlike #+ lnprior[k] totlnlikes.append(totlnlike) nlnlikes = -0.5 * np.array(totlnlikes) mstats.add_to_stats("totlikes", nlnlikes) mstats.get_stats() lnlikes = mstats.vectors["totlikes"].sum(axis=0) lnlikes -= lnlikes.max() pl = io.Plotter(xlabel="$A$", ylabel="$\\mathrm{ln}\\mathcal{L}$") for j in range(mstats.vectors["totlikes"].shape[0]): pl.add( kamps, mstats.vectors["totlikes"][j, :] / mstats.vectors["totlikes"][j, :].max())