halo=True, gradCut=10000, verbose=True, loadPickledNormAndFilters=loadFile, savePickledNormAndFilters=saveFile) modLMap = qest.N.modLMap bin_edges = np.arange(2,kellmax,10) pl = Plotter(scaleY='log',scaleX='log') pl.add(ellkk,4.*Clkk/2./np.pi) # CHECK THAT NORM MATCHES HU/OK for polComb,col in zip(polCombList,colorList): data2d = qest.N.Nlkk[polComb] centers, Nlbinned = binInAnnuli(data2d, modLMap, bin_edges) try: huFile = '/astro/u/msyriac/repos/cmb-lensing-projections/data/NoiseCurvesKK/hu_'+polComb.lower()+'.csv' huell,hunl = np.loadtxt(huFile,unpack=True,delimiter=',') except: huFile = '/astro/u/msyriac/repos/cmb-lensing-projections/data/NoiseCurvesKK/hu_'+polComb[::-1].lower()+'.csv' huell,hunl = np.loadtxt(huFile,unpack=True,delimiter=',') pl.add(centers,4.*Nlbinned/2./np.pi,color=col) pl.add(huell,hunl,ls='--',color=col) pl.done("tests/output/testbin.png")
for j, polComb in enumerate(polCombList): kappa = qest.getKappa(polComb) # pl = Plotter() # pl.plot2d(fftshift(qest.AL[polComb])) # pl.done("al.png") # sys.exit() reconLm = lensedTLm.copy() reconLm.data[:, :] = kappa[:, :].real print "crossing with input" p2d = ft.powerFromLiteMap(kappaLm, reconLm, applySlepianTaper=False) centers, means = stats.binInAnnuli(p2d.powerMap, p2d.modLMap, bin_edges) listCrossPower[polComb].append(means) p2d = ft.powerFromLiteMap(reconLm, applySlepianTaper=False) centers, means = stats.binInAnnuli(p2d.powerMap, p2d.modLMap, bin_edges) listReconPower[polComb].append(means) p2d = ft.powerFromLiteMap(kappaLm, applySlepianTaper=False) centers, means = stats.binInAnnuli(p2d.powerMap, p2d.modLMap, bin_edges) if k == 0: totInputPower = (means.copy() * 0.).astype(dtype=np.float64) totInputPower = totInputPower + means if rank != 0:
noiseX2dTEB=[nT, nP, nP], noiseY2dTEB=[nT, nP, nP], fmaskX2dTEB=[fMask] * 3, fmaskY2dTEB=[fMask] * 3, fmaskKappa=fMaskK, doCurl=False, TOnly=True, halo=True, gradCut=10000, verbose=True) # CHECK THAT NORM MATCHES HU/OK data2d = qest.AL['TT'] modLMap = qest.N.modLMap bin_edges = np.arange(2, kellmax, 10) centers, Nlbinned = binInAnnuli(data2d, modLMap, bin_edges) huFile = '/astro/u/msyriac/repos/cmb-lensing-projections/data/NoiseCurvesKK/hu_tt.csv' huell, hunl = np.loadtxt(huFile, unpack=True, delimiter=',') pl = Plotter(scaleY='log', scaleX='log') pl.add(ellkk, 4. * Clkk / 2. / np.pi) pl.add(centers, 4. * Nlbinned / 2. / np.pi) #,ls="none",marker="o") pl.add(huell, hunl, ls='--') #,ls="none",marker="o") pl.done("testbin.png") passMap = bigMap[:, :] * window[:, :] passMap = passMap - passMap.mean() if k == 0: pl = Plotter()