def evaluate(dataloader, detector, cfg_maskrcnn, retrievalnet, opt, cfg_eval, cfg_visualization, is_cuda=False, logger_prefix="detector-retrieval"): logger = logging.getLogger(f"{logger_prefix}.evaluate") dataset_name = dataloader.get_name() dataset_scale = dataloader.get_eval_scale() logger.info("Starting to eval on {0}, scale {1}".format( dataset_name, dataset_scale)) t_start_eval = time.time() detector.eval() retrievalnet.eval() ## setup retrievalnet # setting up the multi-scale parameters ms = [1] msp = 1 if opt.retrieval_multiscale: ms = [1, 1. / math.sqrt(2), 1. / 2] if retrievalnet.meta[ "pooling"] == "gem" and retrievalnet.whiten is None: msp = retrievalnet.pool.p.data.tolist()[0] #setup whitening if opt.retrieval_whitening_path is not None: logger.info("Whitening is precomputed, loading it from {0}".format( opt.retrieval_whitening_path)) whitening_data = torch.load(opt.retrieval_whitening_path) if ( (opt.retrieval_multiscale and "ms" in whitening_data) or \ (not opt.retrieval_multiscale and "ss" in whitening_data ) ): if opt.retrieval_multiscale: Lw = copy.deepcopy(whitening_data["ms"]) else: Lw = copy.deepcopy(whitening_data["ss"]) else: raise RuntimeError( "Whitening should be precomputed with the network") # convert whitening data to torch tensors Lw["m"], Lw["P"] = torch.from_numpy(Lw["m"]), torch.from_numpy(Lw["P"]) if is_cuda: Lw["m"], Lw["P"] = Lw["m"].cuda(), Lw["P"].cuda() else: Lw = None with torch.no_grad( ): # do evaluation in forward mode only (for speed and memory) # extract features from query images query_images, _, _ = dataloader.get_all_class_images(do_resize=False) if is_cuda: query_images = [img.cuda() for img in query_images] query_images = [img[0] for img in query_images ] # get rid of the batch dimension query_images = [ resize_image_tensor(img, opt.retrieval_image_size) for img in query_images ] query_images = [dataloader.unnorm_image(img) for img in query_images] query_images_with_aug = [] for im in query_images: query_images_with_aug.append(im) if not cfg_eval.class_image_augmentation: num_class_views = 1 elif cfg_eval.class_image_augmentation == "rotation90": im90 = im.rot90(1, [1, 2]) im180 = im90.rot90(1, [1, 2]) im270 = im180.rot90(1, [1, 2]) query_images_with_aug.append(im90) query_images_with_aug.append(im180) query_images_with_aug.append(im270) num_class_views = 4 elif cfg_eval.class_image_augmentation == "horflip": im_flipped = im.flip(2) query_images_with_aug.append(im_flipped) num_class_views = 2 else: raise RuntimeError( f"Unknown value of class_image_augmentation: {cfg_eval.class_image_augmentation}" ) query_images = query_images_with_aug query_vectors = extract_vectors_from_images(retrievalnet, query_images, ms=ms, msp=msp) # apply whitening if defined if Lw is not None: query_vectors = whitenapply(query_vectors, Lw["m"], Lw["P"]) query_vectors = torch.transpose(query_vectors, 0, 1) # prepare looping over all iamges iterator = make_iterator_extract_scores_from_images_batched( dataloader, detector, cfg_maskrcnn, logger, image_batch_size=cfg_eval.batch_size, is_cuda=is_cuda) boxes, labels, scores = [], [], [] gt_boxes = [] image_ids = [] losses = OrderedDict() # loop over all dataset images num_evaluted_images = 0 for data in iterator: image_id, boxes_one_image, image_pyramid, query_img_sizes, class_ids, initial_img_size = data image_ids.append(image_id) logger.info(f"Image {num_evaluted_images}: id {image_id}") num_evaluted_images += 1 img_size_pyramid = [ FeatureMapSize(img=img) for img in image_pyramid ] gt_boxes_one_image = dataloader.get_image_annotation_for_imageid( image_id) gt_boxes.append(gt_boxes_one_image) # vizualize GT for debug if cfg_visualization.show_gt_boxes: visualizer.show_gt_boxes(image_id, gt_boxes_one_image, class_ids, dataloader) # decode image predictions # merge boxes_one_image, labels_one_image, scores_one_image from different pyramid layers boxes_one_image = cat_boxlist(boxes_one_image) # do NMS good_indices = nms( boxes_one_image, opt.nms_iou_threshold_detector_score, nms_score_threshold=opt.nms_score_threshold_detector_score) boxes_one_image = boxes_one_image[good_indices] # extract feature vectors from the predictions image_original = dataloader._transform_image(image_id, do_augmentation=True, hflip=False, vflip=False)[0] if is_cuda: image_original = image_original.cuda() image_patches = crop_resize_image_patches( image_original, boxes_one_image, opt.retrieval_image_size, logger, unnorm_image=dataloader.unnorm_image, is_cuda=is_cuda) # filter out cases when failed to crop a box: outside of the image good_indices = [ i for i, p in enumerate(image_patches) if p is not None ] if good_indices: # non empty image_patches = [p for p in image_patches if p is not None] boxes_one_image = boxes_one_image[good_indices] image_vectors = extract_vectors_from_images(retrievalnet, image_patches, ms=ms, msp=msp) # compute class scores from image_vectors and query_vectors (already transposed) if Lw is not None: # apply whitening if defined image_vectors = whitenapply(image_vectors, Lw["m"], Lw["P"]) scores_retrieval = torch.mm(query_vectors, image_vectors) num_queries = scores_retrieval.size(0) num_detections = scores_retrieval.size(1) list_of_active_label = torch.LongTensor(class_ids) if cfg_eval.class_image_augmentation: list_of_active_label = torch.stack( [list_of_active_label] * num_class_views, 1).view(-1) # take all labels for all boxes - will sort them by scores at eval scores_one_image = scores_retrieval.view(-1) boxes_one_image = cat_boxlist([boxes_one_image] * num_queries) labels_one_image = torch.stack([list_of_active_label] * num_detections, 1).contiguous().view(-1) # add scores and labels: overwrite if existed boxes_one_image.add_field("labels", labels_one_image) boxes_one_image.add_field("scores", scores_one_image) # NMS using the retrieval scores good_indices = nms( boxes_one_image, cfg_eval.nms_iou_threshold, nms_score_threshold=cfg_eval.nms_score_threshold, do_separate_per_label=not cfg_eval.nms_across_classes) boxes_one_image = boxes_one_image[good_indices] else: boxes_one_image.add_field( "labels", torch.zeros(0, dtype=torch.long, device=boxes_one_image.bbox_xyxy.device)) boxes_one_image.add_field( "scores", torch.zeros(0, dtype=torch.float, device=boxes_one_image.bbox_xyxy.device)) boxes.append(boxes_one_image.cpu()) if cfg_visualization.show_detections: # do not pass class_ids - this is already taken care of visualizer.show_detections(boxes_one_image, image_id, dataloader, cfg_visualization, class_ids=None) # normalize by number of steps for k in losses: losses[k] /= num_evaluted_images # Save detection if requested if cfg_visualization.path_to_save_detections: data = { "image_ids": image_ids, "boxes_xyxy": [bb.bbox_xyxy for bb in boxes], "labels": [bb.get_field("labels") for bb in boxes], "scores": [bb.get_field("scores") for bb in boxes], "gt_boxes_xyxy": [bb.bbox_xyxy for bb in gt_boxes], "gt_labels": [bb.get_field("labels") for bb in gt_boxes], "gt_difficults": [bb.get_field("difficult") for bb in gt_boxes] } dataset_name = dataloader.get_name() os.makedirs(cfg_visualization.path_to_save_detections, exist_ok=True) save_path = os.path.join(cfg_visualization.path_to_save_detections, dataset_name + "_detections.pth") torch.save(data, save_path) # compute mAP for mAP_iou_threshold in cfg_eval.mAP_iou_thresholds: logger.info("Evaluating at IoU th {:0.2f}".format(mAP_iou_threshold)) ap_data = do_voc_evaluation(boxes, gt_boxes, iou_thresh=mAP_iou_threshold, use_07_metric=False) losses["mAP@{:0.2f}".format(mAP_iou_threshold)] = ap_data["map"] losses["mAPw@{:0.2f}".format( mAP_iou_threshold)] = ap_data["map_weighted"] losses["recall@{:0.2f}".format(mAP_iou_threshold)] = ap_data["recall"] # per class AP information for i_class, (ap, recall, n_pos) in enumerate( zip(ap_data["ap_per_class"], ap_data["recall_per_class"], ap_data["n_pos"])): if not np.isnan(ap): assert i_class in class_ids, "Could not find class_id in the list of ids" logger.info( "Class {0} (local {3}), AP {1:0.4f}, #obj {2}, recall {4:0.4f}" .format(i_class, ap, n_pos, class_ids.index(i_class), recall)) # save timing losses["eval_time"] = (time.time() - t_start_eval) logger.info("Evaluated on {0}, scale {1}".format(dataset_name, dataset_scale)) print_meters(losses, logger) return losses
def trainval_loop(dataloader_train, net, cfg, criterion, optimizer, dataloaders_eval=[]): """Main train+val loop Args: dataloader_train -dataloader to get training batches net - the network to use cfg - config with all the parameters criterion - criterion to optimize optimizer - optimization to use dataloaders_eval - a list of dataloaders to use for validation, at each validation stage all of them will be used sequentially Returns nothing """ # init plotting and logging logger = logging.getLogger("OS2D.train") t_start = time.time() num_steps_for_logging, meters_running = 0, {} full_log = init_log() if cfg.train.optim.max_iter > 0 and cfg.train.do_training: logger.info("Start training") # setup the learning rate schedule _, anneal_lr_func = setup_lr(optimizer, full_log, cfg.train.optim.anneal_lr, cfg.eval.iter) # evaluate the initial model meters_eval = evaluate_model(dataloaders_eval, net, cfg, criterion) if cfg.output.best_model.do_get_best_model: assert (cfg.output.best_model.dataset and cfg.output.best_model.dataset in meters_eval) \ or (len(cfg.eval.dataset_names) > 0 and cfg.eval.dataset_names[0] in meters_eval), \ "Cannot determine which dataset to use for the best model" best_model_dataset_name = cfg.output.best_model.dataset if cfg.output.best_model.dataset else cfg.eval.dataset_names[0] best_model_metric = meters_eval[best_model_dataset_name][cfg.output.best_model.metric] logger.info(f"Init model is the current best on {best_model_dataset_name} by {cfg.output.best_model.metric}, value {best_model_metric:.4f}") if cfg.output.path: checkpoint_best_model_name = f"best_model_{best_model_dataset_name}_{cfg.output.best_model.metric}" checkpoint_best_model_path = \ checkpoint_model(net, optimizer, cfg.output.path, cfg.is_cuda, model_name=checkpoint_best_model_name, extra_fields={"criterion_dataset": best_model_dataset_name, "criterion_metric": cfg.output.best_model.metric, "criterion_mode": cfg.output.best_model.mode, "criterion_value": best_model_metric, "criterion_value_old": None}) else: raise RuntimeError("cfg.output.best_model.do_get_best_model i set to True, but cfg.output.path is not provided, so cannot save best models") if cfg.train.optim.anneal_lr.reload_best_model_after_anneal_lr and\ cfg.train.optim.anneal_lr.type != "none": assert cfg.output.best_model.do_get_best_model, "cfg.train.optim.anneal_lr.reload_best_model_after_anneal_lr was set to True, but cfg.output.best_model.do_get_best_model is False, so there is no best model to reload from" # add the initial point log_meters(full_log, t_start, -1, cfg.output.path, meters_eval=meters_eval, anneal_lr=anneal_lr_func) # save initial model if cfg.output.path: checkpoint_model(net, optimizer, cfg.output.path, cfg.is_cuda, i_iter=0) # start training i_epoch = 0 i_batch = len(dataloader_train) # to start a new epoch at the first iteration for i_iter in range(cfg.train.optim.max_iter): # restart dataloader if needed if i_batch >= len(dataloader_train): i_epoch += 1 i_batch = 0 # shuffle dataset dataloader_train.shuffle() # mine hard negative classes if cfg.train.mining.do_mining and i_iter % cfg.train.mining.mine_hard_patches_iter == 0: hardnegdata_per_imageid = mine_hard_patches(dataloader_train, net, cfg, criterion) dataloader_train.set_hard_negative_data(hardnegdata_per_imageid) # print iter info logger.info(f"Iter {i_iter} ({cfg.train.optim.max_iter}), epoch {i_epoch}, time {time_since(t_start)}") # get data for training t_start_loading = time.time() batch_data = dataloader_train.get_batch(i_batch) t_data_loading = time.time() - t_start_loading i_batch += 1 num_steps_for_logging += 1 # train on one batch meters = train_one_batch(batch_data, net, cfg, criterion, optimizer, dataloader_train, logger) meters["loading_time"] = t_data_loading # print meters if i_iter % cfg.output.print_iter == 0: print_meters(meters, logger) # update logs add_to_meters_in_dict(meters, meters_running) # evaluation if (i_iter + 1) % cfg.eval.iter == 0: meters_eval = evaluate_model(dataloaders_eval, net, cfg, criterion) # checkpoint the best model if cfg.output.best_model.do_get_best_model: cur_metric = meters_eval[best_model_dataset_name][cfg.output.best_model.metric] assert cfg.output.best_model.mode in ["max", "min"], f"cfg.output.best_model.mode should be 'max' or 'min', but have {cfg.output.best_model.mode}" if (cfg.output.best_model.mode=="max" and cur_metric > best_model_metric) or \ (cfg.output.best_model.mode=="min" and cur_metric < best_model_metric): # overwrite the best model logger.info(f"New best model on {best_model_dataset_name} by {cfg.output.best_model.metric}, value {cur_metric:.4f}") if cfg.output.path: checkpoint_best_model_path = \ checkpoint_model(net, optimizer, cfg.output.path, cfg.is_cuda, model_name=checkpoint_best_model_name, extra_fields={"criterion_dataset": best_model_dataset_name, "criterion_metric": cfg.output.best_model.metric, "criterion_mode": cfg.output.best_model.mode, "criterion_value": cur_metric, "criterion_value_old": best_model_metric}) best_model_metric = cur_metric # normalize by number of steps for k in meters_running: meters_running[k] /= num_steps_for_logging # anneal learning rate meters_running["lr"] = get_learning_rate(optimizer) if anneal_lr_func: lr = anneal_lr_func(i_iter + 1, anneal_now=i_iter > cfg.train.optim.anneal_lr.initial_patience) flag_changed_lr = lr != meters_running["lr"] else: lr = meters_running["lr"] flag_changed_lr = False # if lr was annealed load the best up to now model and set it up if cfg.train.optim.anneal_lr.reload_best_model_after_anneal_lr and flag_changed_lr: if cfg.output.best_model.do_get_best_model: # if have the best model at all optimizer_state = net.init_model_from_file(checkpoint_best_model_path) if optimizer_state is not None: optimizer.load_state_dict(optimizer_state) set_learning_rate(optimizer, lr) # eval and log log_meters(full_log, t_start, i_iter, cfg.output.path, meters_running=meters_running, meters_eval=meters_eval) # init for the next num_steps_for_logging, meters_running = 0, {} # save intermediate model if cfg.output.path and cfg.output.save_iter and i_iter % cfg.output.save_iter == 0: checkpoint_model(net, optimizer, cfg.output.path, cfg.is_cuda, i_iter=i_iter) # evaluate the final model logger.info("Final evaluation") meters_eval = evaluate_model(dataloaders_eval, net, cfg, criterion, print_per_class_results=True) # add the final point if cfg.train.optim.max_iter > 0 and cfg.train.do_training: log_meters(full_log, t_start, cfg.train.optim.max_iter, cfg.output.path, meters_eval=meters_eval) # save the final model if cfg.output.path: checkpoint_model(net, optimizer, cfg.output.path, cfg.is_cuda, i_iter=cfg.train.optim.max_iter)
def evaluate(dataloader, net, cfg, criterion=None, print_per_class_results=False): """ Evaluation of the provided model at one dataset Args: dataloader - the dataloader to get data net - the network to use cfg - config with all the parameters criterion - criterion (usually the same one as used for training), can be None, will just not compute related metrics print_per_class_results - flag showing whether to printout extra data (per class AP) - usually used at the final evaluation Returns: losses (OrderedDict) - all computed metrics, e.g., losses["[email protected]"] - mAP at IoU threshold 0.5 """ logger = logging.getLogger("OS2D.evaluate") dataset_name = dataloader.get_name() dataset_scale = dataloader.get_eval_scale() logger.info("Starting to eval on {0}, scale {1}".format(dataset_name, dataset_scale)) t_start_eval = time.time() net.eval() iterator = make_iterator_extract_scores_from_images_batched(dataloader, net, logger, image_batch_size=cfg.eval.batch_size, is_cuda=cfg.is_cuda, class_image_augmentation=cfg.eval.class_image_augmentation) boxes = [] gt_boxes = [] losses = OrderedDict() image_ids = [] # loop over all dataset images num_evaluted_images = 0 for data in iterator: image_id, image_loc_scores_pyramid, image_class_scores_pyramid,\ image_pyramid, query_img_sizes, class_ids,\ box_reverse_transform, image_fm_sizes_p, transform_corners_pyramid\ = data image_ids.append(image_id) num_evaluted_images += 1 img_size_pyramid = [FeatureMapSize(img=img) for img in image_pyramid] num_labels = len(class_ids) gt_boxes_one_image = dataloader.get_image_annotation_for_imageid(image_id) gt_boxes.append(gt_boxes_one_image) # compute losses if len(gt_boxes_one_image) > 0: # there is some annotation for this image gt_labels_one_image = gt_boxes_one_image.get_field("labels") dataloader.update_box_labels_to_local(gt_boxes_one_image, class_ids) loc_targets_pyramid, class_targets_pyramid = \ dataloader.box_coder.encode_pyramid(gt_boxes_one_image, img_size_pyramid, num_labels, default_box_transform_pyramid=box_reverse_transform) # return the original labels back gt_boxes_one_image.add_field("labels", gt_labels_one_image) # vizualize GT for debug if cfg.visualization.eval.show_gt_boxes: visualizer.show_gt_boxes(image_id, gt_boxes_one_image, class_ids, dataloader) if cfg.is_cuda: loc_targets_pyramid = [loc_targets.cuda() for loc_targets in loc_targets_pyramid] class_targets_pyramid = [class_targets.cuda() for class_targets in class_targets_pyramid] transform_corners_pyramid = [transform_corners.cuda() for transform_corners in transform_corners_pyramid] add_batch_dim = lambda list_of_tensors: [t.unsqueeze(0) for t in list_of_tensors] if criterion is not None: # if criterion is provided, use it to compute all metrics it can losses_iter = criterion(add_batch_dim(image_loc_scores_pyramid) if image_loc_scores_pyramid[0] is not None else None, add_batch_dim(loc_targets_pyramid), add_batch_dim(image_class_scores_pyramid), add_batch_dim(class_targets_pyramid) ) # convert to floats for l in losses_iter: losses_iter[l] = losses_iter[l].mean().item() # printing print_meters(losses_iter, logger) # update logs add_to_meters_in_dict(losses_iter, losses) # decode image predictions boxes_one_image = \ dataloader.box_coder.decode_pyramid(image_loc_scores_pyramid, image_class_scores_pyramid, img_size_pyramid, class_ids, nms_iou_threshold=cfg.eval.nms_iou_threshold, nms_score_threshold=cfg.eval.nms_score_threshold, inverse_box_transforms=box_reverse_transform, transform_corners_pyramid=transform_corners_pyramid) boxes.append(boxes_one_image.cpu()) if cfg.visualization.eval.show_detections: visualizer.show_detection_from_dataloader(boxes_one_image, image_id, dataloader, cfg.visualization.eval, class_ids=None) if cfg.visualization.eval.show_class_heatmaps: visualizer.show_class_heatmaps(image_id, class_ids, image_fm_sizes_p, class_targets_pyramid, image_class_scores_pyramid, cfg_local=cfg.visualization.eval, class_image_augmentation=cfg.eval.class_image_augmentation) if cfg.is_cuda: torch.cuda.empty_cache() # normalize by number of steps for k in losses: losses[k] /= num_evaluted_images # Save detection if requested path_to_save_detections = cfg.visualization.eval.path_to_save_detections if path_to_save_detections: data = {"image_ids" : image_ids, "boxes_xyxy" : [bb.bbox_xyxy for bb in boxes], "labels" : [bb.get_field("labels") for bb in boxes], "scores" : [bb.get_field("scores") for bb in boxes], "gt_boxes_xyxy" : [bb.bbox_xyxy for bb in gt_boxes], "gt_labels" : [bb.get_field("labels") for bb in gt_boxes], "gt_difficults" : [bb.get_field("difficult") for bb in gt_boxes] } dataset_name = dataloader.get_name() os.makedirs(path_to_save_detections, exist_ok=True) save_path = os.path.join(path_to_save_detections, dataset_name + "_detections.pth") torch.save(data, save_path) # compute mAP for mAP_iou_threshold in cfg.eval.mAP_iou_thresholds: logger.info("Evaluating at IoU th {:0.2f}".format(mAP_iou_threshold)) ap_data = do_voc_evaluation(boxes, gt_boxes, iou_thresh=mAP_iou_threshold, use_07_metric=False) losses["mAP@{:0.2f}".format(mAP_iou_threshold)] = ap_data["map"] losses["mAPw@{:0.2f}".format(mAP_iou_threshold)] = ap_data["map_weighted"] losses["recall@{:0.2f}".format(mAP_iou_threshold)] = ap_data["recall"] if print_per_class_results: # per class AP information for i_class, (ap, recall, n_pos) in enumerate(zip(ap_data["ap_per_class"], ap_data["recall_per_class"], ap_data["n_pos"])): if not np.isnan(ap): assert i_class in class_ids, "Could not find class_id in the list of ids" logger.info("Class {0} (local {3}), AP {1:0.4f}, #obj {2}, recall {4:0.4f}".format(i_class, ap, n_pos, class_ids.index(i_class), recall)) # save timing losses["eval_time"] = (time.time() - t_start_eval) logger.info("Evaluated on {0}, scale {1}".format(dataset_name, dataset_scale)) print_meters(losses, logger) return losses
def mine_hard_patches(dataloader, net, cfg, criterion): """Mine patches that are hard: classification false positives and negative, localization errors At each level of sampled image pyramid, we need to cut out a piece of size appropriate for training (levels are defined by cfg.train.mining.num_random_pyramid_scales, cfg.train.mining.num_random_negative_classes) Args: dataloader - dataloader to use (often the same as the one for training) net - the network to use cfg - config with all the parameters criterion - criterion (usually the same one as used for training) Returns: hardnegdata_per_imageid (OrderedDict) - mined data, keys are the image ids; further used in dataloader.set_hard_negative_data(hardnegdata_per_imageid) when preparing batches """ logger = logging.getLogger("OS2D.mining_hard_patches") logger.info("Starting to mine hard patches") t_start_mining = time.time() net.eval() num_batches = len(dataloader) hardnegdata_per_imageid = OrderedDict() iterator = make_iterator_extract_scores_from_images_batched(dataloader, net, logger, image_batch_size=cfg.eval.batch_size, is_cuda=cfg.is_cuda, num_random_pyramid_scales=cfg.train.mining.num_random_pyramid_scales, num_random_negative_labels=cfg.train.mining.num_random_negative_classes) boxes = [] gt_boxes = [] losses = OrderedDict() # loop over all dataset images for data in iterator: t_item_start = time.time() image_id, image_loc_scores_pyramid, image_class_scores_pyramid, \ image_pyramid, query_img_sizes, \ batch_class_ids, box_reverse_transform_pyramid, image_fm_sizes_p, transform_corners_pyramid \ = data img_size_pyramid = [FeatureMapSize(img=image) for image in image_pyramid] gt_boxes_one_image = dataloader.get_image_annotation_for_imageid(image_id) gt_boxes.append(gt_boxes_one_image) # compute losses # change labels to the ones local to the current image dataloader.update_box_labels_to_local(gt_boxes_one_image, batch_class_ids) num_labels = len(batch_class_ids) loc_targets_pyramid, class_targets_pyramid = \ dataloader.box_coder.encode_pyramid(gt_boxes_one_image, img_size_pyramid, num_labels, default_box_transform_pyramid=box_reverse_transform_pyramid) # vizualize GT for debug if cfg.visualization.mining.show_gt_boxes: visualizer.show_gt_boxes(image_id, gt_boxes_one_image, batch_class_ids, dataloader) # compute losses if cfg.is_cuda: loc_targets_pyramid = [loc_targets.cuda() for loc_targets in loc_targets_pyramid] class_targets_pyramid = [class_targets.cuda() for class_targets in class_targets_pyramid] add_batch_dim = lambda list_of_tensors: [t.unsqueeze(0) for t in list_of_tensors] loc_scores_pyramid = add_batch_dim(image_loc_scores_pyramid) cls_targets_remapped_pyramid = [] for loc_scores, img_size, box_reverse_transform in zip(loc_scores_pyramid, img_size_pyramid, box_reverse_transform_pyramid): # loop over the pyramid levels cls_targets_remapped, ious_anchor, ious_anchor_corrected = \ dataloader.box_coder.remap_anchor_targets(loc_scores, [img_size], query_img_sizes, [gt_boxes_one_image], box_reverse_transform=[box_reverse_transform]) cls_targets_remapped_pyramid.append(cls_targets_remapped) losses_iter, losses_per_anchor = criterion(loc_scores_pyramid, add_batch_dim(loc_targets_pyramid), add_batch_dim(image_class_scores_pyramid), add_batch_dim(class_targets_pyramid), cls_targets_remapped=cls_targets_remapped_pyramid, patch_mining_mode=True) if cfg.visualization.mining.show_class_heatmaps: visualizer.show_class_heatmaps(image_id, batch_class_ids, image_fm_sizes_p, class_targets_pyramid, image_class_scores_pyramid, cfg_local=cfg.visualization.mining) assert dataloader.data_augmentation is not None, "Can mine hard patches only through data augmentation" crop_size = dataloader.data_augmentation.random_crop_size # convert to floats for l in losses_iter: losses_iter[l] = losses_iter[l].mean().item() # printing print_meters(losses_iter, logger) # update logs add_to_meters_in_dict(losses_iter, losses) # construct crop boxes for all the anchors and NMS them - NMS pos ang neg anchors separately query_fm_sizes = [dataloader.box_coder._get_feature_map_size_per_image_size(sz) for sz in query_img_sizes] crops = [] achors = [] labels_of_anchors = [] pyramid_level_of_anchors = [] losses_of_anchors = [] corners_of_anchors = [] losses_loc_of_anchors = [] pos_mask_of_anchors = [] pos_loc_mask_of_anchors = [] neg_mask_of_anchors = [] anchor_indices = [] i_image_in_batch = 0 # only one image comes here for i_p, img_size in enumerate(img_size_pyramid): for i_label, query_fm_size in enumerate(query_fm_sizes): crop_position, anchor_position, anchor_index = \ dataloader.box_coder.output_box_grid_generator.get_box_to_cut_anchor(img_size, crop_size, image_fm_sizes_p[i_p], box_reverse_transform_pyramid[i_p]) cur_corners = transform_corners_pyramid[i_p][i_label].transpose(0,1) cur_corners = dataloader.box_coder.apply_transform_to_corners(cur_corners, box_reverse_transform_pyramid[i_p], img_size) if cfg.is_cuda: crop_position, anchor_position = crop_position.cuda(), anchor_position.cuda() crops.append(crop_position) achors.append(anchor_position) device = crop_position.bbox_xyxy.device losses_of_anchors.append(losses_per_anchor["cls_loss"][i_p][i_image_in_batch, i_label].to(crop_position.bbox_xyxy)) pos_mask_of_anchors.append(losses_per_anchor["pos_mask"][i_p][i_image_in_batch, i_label].to(device=device)) neg_mask_of_anchors.append(losses_per_anchor["neg_mask"][i_p][i_image_in_batch, i_label].to(device=device)) losses_loc_of_anchors.append(losses_per_anchor["loc_loss"][i_p][i_image_in_batch, i_label].to(crop_position.bbox_xyxy)) pos_loc_mask_of_anchors.append(losses_per_anchor["pos_for_regression"][i_p][i_image_in_batch, i_label].to(device=device)) corners_of_anchors.append(cur_corners.to(crop_position.bbox_xyxy)) num_anchors = len(crop_position) labels_of_anchors.append(torch.full([num_anchors], i_label, dtype=torch.long)) pyramid_level_of_anchors.append(torch.full([num_anchors], i_p, dtype=torch.long)) anchor_indices.append(anchor_index) # stack all crops = cat_boxlist(crops) achors = cat_boxlist(achors) labels_of_anchors = torch.cat(labels_of_anchors, 0) pyramid_level_of_anchors = torch.cat(pyramid_level_of_anchors, 0) losses_of_anchors = torch.cat(losses_of_anchors, 0) losses_loc_of_anchors = torch.cat(losses_loc_of_anchors, 0) pos_mask_of_anchors = torch.cat(pos_mask_of_anchors, 0) pos_loc_mask_of_anchors = torch.cat(pos_loc_mask_of_anchors, 0) neg_mask_of_anchors = torch.cat(neg_mask_of_anchors, 0) anchor_indices = torch.cat(anchor_indices, 0) corners_of_anchors = torch.cat(corners_of_anchors, 0) def nms_masked_and_collect_data(mask, crops_xyxy, scores, nms_iou_threshold_in_mining, max_etries=None): mask_ids = torch.nonzero(mask).squeeze(1) boxes_selected = copy.deepcopy(crops_xyxy[mask]) boxes_selected.add_field("scores", scores[mask]) remaining_boxes = nms(boxes_selected, nms_iou_threshold_in_mining) remaining_boxes = mask_ids[remaining_boxes] # sort and take the topk, because NMS is not sorting by default ids = torch.argsort(scores[remaining_boxes], descending=True) if max_etries is not None: ids = ids[:max_etries] remaining_boxes = remaining_boxes[ids] return remaining_boxes nms_iou_threshold_in_mining = cfg.train.mining.nms_iou_threshold_in_mining num_hard_patches_per_image = cfg.train.mining.num_hard_patches_per_image # hard negatives hard_negs = nms_masked_and_collect_data(neg_mask_of_anchors, crops, losses_of_anchors, nms_iou_threshold_in_mining, num_hard_patches_per_image) # hard positives for classification hard_pos = nms_masked_and_collect_data(pos_mask_of_anchors, crops, losses_of_anchors, nms_iou_threshold_in_mining, num_hard_patches_per_image) # hard positives for localization hard_pos_loc = nms_masked_and_collect_data(pos_loc_mask_of_anchors, crops, losses_loc_of_anchors, nms_iou_threshold_in_mining, num_hard_patches_per_image) # merge all together def standardize(v): return v.item() if type(v) == torch.Tensor else v def add_item(data, role, pyramid_level, label_local, anchor_index, crop_position_xyxy, anchor_position_xyxy, transform_corners): new_item = OrderedDict() new_item["pyramid_level"] = standardize(pyramid_level) new_item["label_local"] = standardize(label_local) new_item["anchor_index"] = standardize(anchor_index) new_item["role"] = role new_item["crop_position_xyxy"] = crop_position_xyxy new_item["anchor_position_xyxy"] = anchor_position_xyxy new_item["transform_corners"] = transform_corners data.append(new_item) hardnegdata = [] for i in hard_negs: add_item(hardnegdata, "neg", pyramid_level_of_anchors[i], labels_of_anchors[i], anchor_indices[i], crops[i].cpu(), achors[i].cpu(), corners_of_anchors[i].cpu()) for i in hard_pos: add_item(hardnegdata, "pos", pyramid_level_of_anchors[i], labels_of_anchors[i], anchor_indices[i], crops[i].cpu(), achors[i].cpu(), corners_of_anchors[i].cpu()) for i in hard_pos_loc: add_item(hardnegdata, "pos_loc", pyramid_level_of_anchors[i], labels_of_anchors[i], anchor_indices[i], crops[i].cpu(), achors[i].cpu(), corners_of_anchors[i].cpu()) # extract loss values and compute the box positions to crop for a in hardnegdata: a["label_global"] = standardize(batch_class_ids[ a["label_local"] ]) a["loss"] = standardize(losses_per_anchor["cls_loss"][a["pyramid_level"]][i_image_in_batch, a["label_local"], a["anchor_index"]]) a["loss_loc"] = standardize(losses_per_anchor["loc_loss"][a["pyramid_level"]][i_image_in_batch, a["label_local"], a["anchor_index"]]) a["score"] = standardize(image_class_scores_pyramid[a["pyramid_level"]][a["label_local"], a["anchor_index"]]) a["image_id"] = standardize(image_id) hardnegdata_per_imageid[image_id] = hardnegdata if cfg.visualization.mining.show_mined_patches: visualizer.show_mined_patches(image_id, batch_class_ids, dataloader, hardnegdata) logger.info("Item time: {0}, since mining start: {1}".format(time_since(t_item_start), time_since(t_start_mining))) logger.info("Hard negative mining finished in {0}".format(time_since(t_start_mining))) return hardnegdata_per_imageid