def load_data(): # load mnist data (source_data, _), (test_source_data, _) = mnist.load_data() # pad with zeros 28x28 MNIST image to become 32x32 # svhn is 32x32 source_data = np.pad(source_data, ((0, 0), (2, 2), (2, 2)), 'constant', constant_values=0) test_source_data = np.pad(test_source_data, ((0, 0), (2, 2), (2, 2)), 'constant', constant_values=0) # input image dimensions # we assume data format "channels_last" rows = source_data.shape[1] cols = source_data.shape[2] channels = 1 # reshape images to row x col x channels # for CNN output/validation size = source_data.shape[0] source_data = source_data.reshape(size, rows, cols, channels) size = test_source_data.shape[0] test_source_data = test_source_data.reshape(size, rows, cols, channels) # load SVHN data target_data = loadmat("datasets/train_32x32.mat") test_target_data = loadmat("datasets/test_32x32.mat") # source data, target data, test_source data data = (source_data, target_data, test_source_data, test_target_data) filenames = ('mnist_test_source.png', 'svhn_test_target.png') titles = ('MNIST test source images', 'SVHN test target images') return other_utils.load_data(data, titles, filenames)
def load_cifar10(): (B_data, _), (test_B_data, _) = cifar10.load_data() A_data = other_utils.rgb2gray(B_data) test_A_data = other_utils.rgb2gray(test_B_data) A_data = A_data[:, :, :, np.newaxis] test_A_data = test_A_data[:, :, :, np.newaxis] data = (A_data, B_data, test_A_data, test_B_data) titles = ('CIFAR10 test_A_data images', 'CIFAR10 test_A_data images') return other_utils.load_data(data, titles)
def load_mnist_svhn(): (A_data, _), (test_A_data, _) = mnist.load_data() A_data = np.pad(A_data, ((0, 0), (2, 2), (2, 2)), 'constant', constant_values=0) test_A_data = np.pad(test_A_data, ((0, 0), (2, 2), (2, 2)), 'constant', constant_values=0) A_data = A_data[:, :, :, np.newaxis] test_A_data = test_A_data[:, :, :, np.newaxis] B_data_mat = io.loadmat( "C:/Users/ysp/Desktop/Deep Learning/train_32x32.mat") test_B_mat = io.loadmat( "C:/Users/ysp/Desktop/Deep Learning/test_32x32.mat") B_data = other_utils.loadmat(B_data_mat) test_B_data = other_utils.loadmat(test_B_mat) data = (A_data, B_data, test_A_data, test_B_data) titles = ('MNIST test_A_data images', 'SVHN test_B_data images') return other_utils.load_data(data, titles)
def load_data(): # load CIFAR10 data (target_data, _), (test_target_data, _) = cifar10.load_data() # input image dimensions # we assume data format "channels_last" rows = target_data.shape[1] cols = target_data.shape[2] channels = target_data.shape[3] # convert color train and test images to gray source_data = other_utils.rgb2gray(target_data) test_source_data = other_utils.rgb2gray(test_target_data) # reshape images to row x col x channel for CNN input source_data = source_data.reshape(source_data.shape[0], rows, cols, 1) test_source_data = test_source_data.reshape(test_source_data.shape[0], rows, cols, 1) # source data, target data, test_source data data = (source_data, target_data, test_source_data, test_target_data) filenames = ('cifar10_test_source.png', 'cifar10_test_target.png') titles = ('CIFAR10 test source images', 'CIFAR10 test target images') return other_utils.load_data(data, titles, filenames)