def pcap_display_xyz_points(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0) -> None: """Plot point cloud using matplotlib.""" import matplotlib.pyplot as plt # type: ignore # [doc-stag-pcap-plot-xyz-points] from more_itertools import nth scan = nth(client.Scans(source), num) if not scan: print(f"ERROR: Scan # {num} in not present in pcap file") exit(1) # set up figure plt.figure() ax = plt.axes(projection='3d') r = 6 ax.set_xlim3d([-r, r]) ax.set_ylim3d([-r, r]) ax.set_zlim3d([-r, r]) plt.title("3D Points XYZ for scan") # transform data to 3d points and graph xyzlut = client.XYZLut(metadata) xyz = xyzlut(scan) key = scan.field(client.ChanField.SIGNAL) [x, y, z] = [c.flatten() for c in np.dsplit(xyz, 3)] ax.scatter(x, y, z, c=normalize(key.flatten()), s=0.2) plt.show()
def test_scans_meta(packets: client.PacketSource) -> None: """Sanity check metadata and column headers of a batched scan.""" scans = iter(client.Scans(packets)) scan = next(scans) assert scan.frame_id != -1 assert scan.h == packets.metadata.format.pixels_per_column assert scan.w == packets.metadata.format.columns_per_frame assert len(scan.timestamp) == scan.w assert len(scan.measurement_id) == scan.w assert len(scan.status) == scan.w assert len(scan.header(ColHeader.ENCODER_COUNT)) == scan.w assert scan._complete() # all timestamps valid assert np.count_nonzero(scan.timestamp) == scan.w if (packets.metadata.format.udp_profile_lidar == client.UDPProfileLidar.PROFILE_LIDAR_LEGACY): # check that all columns are valid assert (scan.status == 0xffffffff).all() # only first encoder count is zero assert np.count_nonzero(scan.header( ColHeader.ENCODER_COUNT)) == scan.w - 1 else: # only lowest bit indicates valid assert (scan.status & 0x1).all() # encoder counts zeroed assert (scan.header(ColHeader.ENCODER_COUNT) == 0).all()
def test_scans_closed(meta: client.SensorInfo) -> None: """Check reading from closed scans raises an exception.""" with closing(client.Sensor("os.invalid", 0, 0, metadata=meta)) as source: scans = client.Scans(source) scans.close() with pytest.raises(ValueError): next(iter(scans))
def test_scans_first_packet(packet: client.LidarPacket, packets: client.PacketSource) -> None: """Check that data in the first packet survives batching to a scan.""" scans = iter(client.Scans(packets)) scan = next(scans) h = packet._pf.pixels_per_column w = packet._pf.columns_per_packet assert np.array_equal(packet.field(ChanField.RANGE), scan.field(ChanField.RANGE)[:h, :w]) assert np.array_equal(packet.field(ChanField.REFLECTIVITY), scan.field(ChanField.REFLECTIVITY)[:h, :w]) assert np.array_equal(packet.field(client.ChanField.SIGNAL), scan.field(client.ChanField.SIGNAL)[:h, :w]) assert np.array_equal(packet.field(client.ChanField.NEAR_IR), scan.field(client.ChanField.NEAR_IR)[:h, :w]) assert np.all(packet.header(ColHeader.FRAME_ID) == scan.frame_id) assert np.array_equal(packet.header(ColHeader.TIMESTAMP), scan.header(ColHeader.TIMESTAMP)[:w]) assert np.array_equal(packet.header(ColHeader.ENCODER_COUNT), scan.header(ColHeader.ENCODER_COUNT)[:w]) assert np.array_equal(packet.header(ColHeader.STATUS), scan.header(ColHeader.STATUS)[:w])
def pcap_show_one_scan(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0, destagger: bool = True) -> None: """Plot all channels of one scan in 2D using matplotlib.""" import matplotlib.pyplot as plt # type: ignore scan = nth(client.Scans(source), num) if not scan: print(f"ERROR: Scan # {num} in not present in pcap file") exit(1) # [doc-stag-pcap-show-one] fig = plt.figure(constrained_layout=True) axs = fig.subplots(len(client.ChanField), 1, sharey=True) for ax, field in zip(axs, client.ChanField): img = normalize(scan.field(field)) if destagger: img = client.destagger(metadata, img) ax.set_title(str(field), fontdict={'fontsize': 10}) ax.imshow(img, cmap='gray', resample=False) ax.set_yticklabels([]) ax.set_yticks([]) ax.set_xticks([0, scan.w]) plt.show()
def pcap_to_las(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0, las_dir: str = ".", las_base: str = "las_out", las_ext: str = "las") -> None: "Write scans from a pcap to las files (one per lidar scan)." from itertools import islice import laspy # type: ignore # precompute xyzlut to save computation in a loop xyzlut = client.XYZLut(metadata) # create an iterator of LidarScans from pcap and bound it if num is specified scans = iter(client.Scans(source)) if num: scans = islice(scans, num) for idx, scan in enumerate(scans): xyz = xyzlut(scan) las = laspy.create() las.x = xyz[:, :, 0].flatten() las.y = xyz[:, :, 1].flatten() las.z = xyz[:, :, 2].flatten() las_path = os.path.join(las_dir, f'{las_base}_{idx:06d}.{las_ext}') print(f'write frame #{idx} to file: {las_path}') las.write(las_path)
def test_scans_meta(packets: client.PacketSource) -> None: """Sanity check metadata and column headers of a batched scan.""" scans = iter(client.Scans(packets)) scan = next(scans) assert scan.frame_id != -1 assert scan.h == packets.metadata.format.pixels_per_column assert scan.w == packets.metadata.format.columns_per_frame assert len(scan.header(ColHeader.TIMESTAMP)) == scan.w assert len(scan.header(ColHeader.ENCODER_COUNT)) == scan.w assert len(scan.header(ColHeader.STATUS)) == scan.w assert not scan._complete(), "test data should have missing packet!" # check that the scan is missing exactly one packet's worth of columns valid_columns = list(scan.header(ColHeader.STATUS)).count(0xffffffff) assert valid_columns == (packets.metadata.format.columns_per_frame - packets.metadata.format.columns_per_packet) missing_ts = list(scan.header(ColHeader.TIMESTAMP)).count(0) assert missing_ts == packets.metadata.format.columns_per_packet # extra zero encoder value for first column zero_enc = list(scan.header(ColHeader.ENCODER_COUNT)).count(0) assert zero_enc == packets.metadata.format.columns_per_packet + 1
def test_scans_simple(packets: client.PacketSource) -> None: """Test that the test data contains exactly one scan.""" scans = iter(client.Scans(packets)) assert next(scans) is not None with pytest.raises(StopIteration): next(scans)
def pcap_3d_one_scan(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0) -> None: """Render one scan from a pcap file in the Open3D viewer. Args: source: PacketSource from pcap metadata: associated SensorInfo for PacketSource num: scan number in a given pcap file (satrs from *0*) """ try: import open3d as o3d # type: ignore except ModuleNotFoundError: print( "This example requires open3d, which may not be available on all " "platforms. Try running `pip3 install open3d` first.") exit(1) from more_itertools import nth # get single scan by index scan = nth(client.Scans(source), num) if not scan: print(f"ERROR: Scan # {num} in not present in pcap file") exit(1) # [doc-stag-open3d-one-scan] # compute point cloud using client.SensorInfo and client.LidarScan xyz = client.XYZLut(metadata)(scan) # create point cloud and coordinate axes geometries cloud = o3d.geometry.PointCloud( o3d.utility.Vector3dVector(xyz.reshape((-1, 3)))) # type: ignore axes = o3d.geometry.TriangleMesh.create_coordinate_frame( 1.0) # type: ignore # [doc-etag-open3d-one-scan] # initialize visualizer and rendering options vis = o3d.visualization.Visualizer() # type: ignore vis.create_window() vis.add_geometry(cloud) vis.add_geometry(axes) ropt = vis.get_render_option() ropt.point_size = 1.0 ropt.background_color = np.asarray([0, 0, 0]) # initialize camera settings ctr = vis.get_view_control() ctr.set_zoom(0.1) ctr.set_lookat([0, 0, 0]) ctr.set_up([1, 0, 0]) # run visualizer main loop print("Press Q or Excape to exit") vis.run() vis.destroy_window()
def test_scans_timeout(packets: client.PacketSource) -> None: """A zero timeout should deterministically throw. TODO: should it, though? """ scans = iter(client.Scans(packets, timeout=0.0)) with pytest.raises(client.ClientTimeout): next(scans)
def scan(stream_digest: digest.StreamDigest, meta: client.SensorInfo) -> client.LidarScan: bin_path = path.join(DATA_DIR, "os-992011000121_data.bin") with open(bin_path, 'rb') as b: source = digest.LidarBufStream(b, meta) scans = client.Scans(source) scan = next(iter(scans)) return scan
def test_scans_one_field(packets: client.PacketSource) -> None: """Test batching scans with a single field.""" fields = {ChanField.FLAGS: np.uint8} scan = next(iter(client.Scans(packets, fields=fields))) assert set(scan.fields) == {ChanField.FLAGS} assert scan.field(ChanField.FLAGS).dtype == np.uint8 with pytest.raises(ValueError): scan.field(ChanField.RANGE)
def test_scans_complete(packets: client.PacketSource) -> None: """Test built-in filtering for complete scans. The test dataset only contains a single incomplete frame. Check that specifying ``complete=True`` discards it. """ scans = iter(client.Scans(packets, complete=True)) with pytest.raises(StopIteration): next(scans)
def main() -> None: descr = """Visualize pcap or sensor data using simple viz bindings.""" epilog = """When reading data from a sensor, this will autoconfigure the udp destination unless -x is used.""" parser = argparse.ArgumentParser(description=descr, epilog=epilog) required = parser.add_argument_group('one of the following is required') group = required.add_mutually_exclusive_group(required=True) group.add_argument('--sensor', metavar='HOST', help='sensor hostname') group.add_argument('--pcap', metavar='PATH', help='path to pcap file') parser.add_argument('--meta', metavar='PATH', help='path to metadata json') parser.add_argument('--lidar-port', type=int, help='lidar port for sensor') parser.add_argument('-x', '--no-auto-dest', action='store_true', help='do not auto configure udp destination') args = parser.parse_args() if args.sensor: hostname = args.sensor if args.lidar_port or (not args.no_auto_dest): config = client.SensorConfig() if args.lidar_port: config.udp_port_lidar = args.lidar_port print("Configuring sensor...") client.set_config(hostname, config, udp_dest_auto=(not args.no_auto_dest)) config = client.get_config(hostname) print("Initializing...") scans = client.Scans.stream(hostname, config.udp_port_lidar or 7502, complete=False) rate = None elif args.pcap: import ouster.pcap as pcap if args.meta: metadata_path = args.meta else: print("Deducing metadata based on pcap name. " "To provide a different metadata path, use --meta") metadata_path = os.path.splitext(args.pcap)[0] + ".json" with open(metadata_path) as json: info = client.SensorInfo(json.read()) scans = client.Scans(pcap.Pcap(args.pcap, info)) rate = 1.0 SimpleViz(scans.metadata, rate).run(scans)
def test_scans_complete(packets: client.PacketSource) -> None: """Test built-in filtering for complete scans.""" # make new packet source missing a packet ps = list(packets) del ps[5] dropped = client.Packets(ps, packets.metadata) scans = iter(client.Scans(dropped, complete=True)) with pytest.raises(StopIteration): next(scans)
def pcap_3d_one_scan(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0) -> None: """Render one scan from a pcap file in the Open3D viewer. Args: pcap_path: path to the pcap file metadata_path: path to the .json with metadata (aka :class:`.SensorInfo`) num: scan number in a given pcap file (satrs from *0*) """ import open3d as o3d # get single scan by index scan = nth(client.Scans(source), num) if not scan: print(f"ERROR: Scan # {num} in not present in pcap file") exit(1) # [doc-stag-open3d-one-scan] # compute point cloud using client.SensorInfo and client.LidarScan xyz = client.XYZLut(metadata)(scan) # create point cloud and coordinate axes geometries cloud = o3d.geometry.PointCloud( o3d.utility.Vector3dVector(xyz.reshape((-1, 3)))) axes = o3d.geometry.TriangleMesh.create_coordinate_frame(1.0) # [doc-etag-open3d-one-scan] # initialize visualizer and rendering options vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(cloud) vis.add_geometry(axes) ropt = vis.get_render_option() ropt.point_size = 1.0 ropt.background_color = np.asarray([0, 0, 0]) # initialize camera settings ctr = vis.get_view_control() ctr.set_zoom(0.1) ctr.set_lookat([0, 0, 0]) ctr.set_up([1, 0, 0]) # run visualizer main loop print("Press Q or Excape to exit") vis.run() vis.destroy_window()
def pcap_show_one_scan(pcap_path: str, metadata_path: str, num: int = 0, destagger: bool = True) -> None: """Show all 4 channels of one scan (*num*) form pcap file (*pcap_path*) Args: pcap_path: path to the pcap file metadata_path: path to the .json with metadata (aka :class:`.SensorInfo`) num: scan number in a given pcap file (satrs from *0*) """ import matplotlib.pyplot as plt # type: ignore # [doc-stag-pcap-show-one] metadata = read_metadata(metadata_path) def prepare_field_image(scan, key, metadata, destagger=True): f = ae(scan.field(key)) if destagger: return client.destagger(metadata, f) return f show_fields = [('range', client.ChanField.RANGE), ('signal', client.ChanField.SIGNAL), ('near_ir', client.ChanField.NEAR_IR), ('reflectivity', client.ChanField.REFLECTIVITY)] with closing(pcap.Pcap(pcap_path, metadata)) as source: scan = nth(client.Scans(source), num) if not scan: return fields_images = [(sf[0], prepare_field_image(scan, sf[1], source.metadata)) for sf in show_fields] fig = plt.figure(constrained_layout=True) axs = fig.subplots(len(fields_images), 1, sharey=True) for ax, field in zip(axs, fields_images): ax.set_title(field[0], fontdict={'fontsize': 10}) ax.imshow(field[1], cmap='gray', resample=False) ax.set_yticklabels([]) ax.set_yticks([]) ax.set_xticks([0, scan.w]) plt.show()
def pcap_2d_viewer(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0) -> None: """Visualize channel fields in 2D using opencv.""" import cv2 # type: ignore # [doc-stag-pcap-display-live] print("press ESC from visualization to exit") quit = False paused = False destagger = True num = 0 for scan in client.Scans(source): print("frame id: {}, num = {}".format(scan.frame_id, num)) fields = [scan.field(ch) for ch in client.ChanField] if destagger: fields = [client.destagger(metadata, f) for f in fields] combined_images = np.vstack( [np.pad(normalize(f), 2, constant_values=1.0) for f in fields]) cv2.imshow("4 channels: ", combined_images) # handle keys presses while True: key = cv2.waitKey(1) & 0xFF # 100 is d if key == 100: destagger = not destagger # 32 is SPACE if key == 32: paused = not paused # 27 is ESC elif key == 27: quit = True if not paused: break time.sleep(0.1) if quit: break num += 1 cv2.destroyAllWindows()
def main() -> None: import argparse import os import ouster.pcap as pcap descr = """Example visualizer using the open3d library. Visualize either pcap data (specified using --pcap) or a running sensor (specified using --sensor). If no metadata file is specified, this will look for a file with the same name as the pcap with the '.json' extension, or query it directly from the sensor. Visualizing a running sensor requires the sensor to be configured and sending lidar data to the default UDP port (7502) on the host machine. """ parser = argparse.ArgumentParser(description=descr) parser.add_argument('--pause', action='store_true', help='start paused') parser.add_argument('--start', type=int, help='skip to frame number') parser.add_argument('--meta', metavar='PATH', help='path to metadata json') required = parser.add_argument_group('one of the following is required') group = required.add_mutually_exclusive_group(required=True) group.add_argument('--sensor', metavar='HOST', help='sensor hostname') group.add_argument('--pcap', metavar='PATH', help='path to pcap file') args = parser.parse_args() if args.sensor: scans = client.Scans.stream(args.sensor, metadata=args.meta) elif args.pcap: pcap_path = args.pcap metadata_path = args.meta or os.path.splitext(pcap_path)[0] + ".json" with open(metadata_path, 'r') as f: metadata = client.SensorInfo(f.read()) source = pcap.Pcap(pcap_path, metadata) scans = client.Scans(source) consume(scans, args.start or 0) try: viewer_3d(scans, paused=args.pause) except (KeyboardInterrupt, StopIteration): pass finally: scans.close()
def pcap_query_scan(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0) -> None: """ Example: Query available fields in LidarScan Args: source: PacketSource from pcap metadata: associated SensorInfo for PacketSource num: scan number in a given pcap file (satrs from *0*) """ scans = iter(client.Scans(source)) # [doc-stag-pcap-query-scan] scan = next(scans) print("Available fields and corresponding dtype in LidarScan") for field in scan.fields: print('{0:15} {1}'.format(str(field), scan.field(field).dtype))
def test_scans_raw(packets: client.PacketSource) -> None: """Smoke test reading raw channel field data.""" fields = { ChanField.RAW32_WORD1: np.uint32, ChanField.RAW32_WORD2: np.uint32, ChanField.RAW32_WORD3: np.uint32 } scans = client.Scans(packets, fields=fields) ls = list(scans) assert len(ls) == 1 assert set(ls[0].fields) == { ChanField.RAW32_WORD1, ChanField.RAW32_WORD2, ChanField.RAW32_WORD3 } # just check that raw fields are populated? for f in ls[0].fields: assert np.count_nonzero(ls[0].field(f)) != 0
def pcap_display_xyz_points(pcap_path: str, metadata_path: str, num: int = 0) -> None: """Display range from a specified scan number (*num*) as 3D points from pcap file located at *pcap_path* Args: pcap_path: path to the pcap file metadata_path: path to the .json with metadata (aka :class:`.SensorInfo`) num: scan number in a given pcap file (satrs from *0*) """ import matplotlib.pyplot as plt # type: ignore # [doc-stag-pcap-plot-xyz-points] metadata = read_metadata(metadata_path) source = pcap.Pcap(pcap_path, metadata) # get single scan scans = client.Scans(source) scan = nth(scans, num) if not scan: print(f'ERROR: Scan # {num} in not present in pcap file: {pcap_path}') return # set up figure plt.figure() ax = plt.axes(projection='3d') r = 6 ax.set_xlim3d([-r, r]) ax.set_ylim3d([-r, r]) ax.set_zlim3d([-r, r]) plt.title("3D Points XYZ for scan") # transform data to 3d points and graph xyzlut = client.XYZLut(metadata) xyz = xyzlut(scan) key = scan.field(client.ChanField.SIGNAL) [x, y, z] = [c.flatten() for c in np.dsplit(xyz, 3)] ax.scatter(x, y, z, c=ae(key.flatten()), s=0.2) plt.show()
def test_scans_dual(packets: client.PacketSource) -> None: """Test scans from dual returns data.""" scans = client.Scans(packets, complete=True) assert (scans.metadata.format.udp_profile_lidar == client.UDPProfileLidar.PROFILE_LIDAR_RNG19_RFL8_SIG16_NIR16_DUAL) ls = list(scans) assert len(ls) == 1 assert set(ls[0].fields) == { ChanField.RANGE, ChanField.RANGE2, ChanField.REFLECTIVITY, ChanField.REFLECTIVITY2, ChanField.SIGNAL, ChanField.SIGNAL2, ChanField.NEAR_IR, }
def pcap_to_pcd(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0, pcd_dir: str = ".", pcd_base: str = "pcd_out", pcd_ext: str = "pcd") -> None: "Write scans from a pcap to pcd files (one per lidar scan)." from itertools import islice try: import open3d as o3d # type: ignore except ModuleNotFoundError: print( "This example requires open3d, which may not be available on all " "platforms. Try running `pip3 install open3d` first.") exit(1) if not os.path.exists(pcd_dir): os.makedirs(pcd_dir) # precompute xyzlut to save computation in a loop xyzlut = client.XYZLut(metadata) # create an iterator of LidarScans from pcap and bound it if num is specified scans = iter(client.Scans(source)) if num: scans = islice(scans, num) for idx, scan in enumerate(scans): xyz = xyzlut(scan) pcd = o3d.geometry.PointCloud() # type: ignore pcd.points = o3d.utility.Vector3dVector(xyz.reshape(-1, 3)) # type: ignore pcd_path = os.path.join(pcd_dir, f'{pcd_base}_{idx:06d}.{pcd_ext}') print(f'write frame #{idx} to file: {pcd_path}') o3d.io.write_point_cloud(pcd_path, pcd) # type: ignore
def main(): """PointViz visualizer examples.""" parser = argparse.ArgumentParser( description=main.__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('pcap_path', nargs='?', metavar='PCAP', help='path to pcap file') parser.add_argument('meta_path', nargs='?', metavar='METADATA', help='path to metadata json') args = parser.parse_args() pcap_path = os.getenv("SAMPLE_DATA_PCAP_PATH", args.pcap_path) meta_path = os.getenv("SAMPLE_DATA_JSON_PATH", args.meta_path) if not pcap_path or not meta_path: print("ERROR: Please add SAMPLE_DATA_PCAP_PATH and SAMPLE_DATA_JSON_PATH to" + " environment variables or pass <pcap_path> and <meta_path>") sys.exit() print(f"Using:\n\tjson: {meta_path}\n\tpcap: {pcap_path}") # Getting data sources meta = client.SensorInfo(open(meta_path).read()) packets = pcap.Pcap(pcap_path, meta) scans = iter(client.Scans(packets)) # ============================== print("Ex 0: Empty Point Viz") # [doc-stag-empty-pointviz] # Creating a point viz instance point_viz = viz.PointViz("Example Viz") viz.add_default_controls(point_viz) # ... add objects here # update internal objects buffers and run visualizer point_viz.update() point_viz.run() # [doc-etag-empty-pointviz] # ========================================================================= print("Ex 1.0:\tImages and Labels: the Image object and 2D Image set_position() - height-normalized screen coordinates") label_top = viz.Label("[0, 1]", 0.5, 0.0, align_top=True) label_top.set_scale(2) point_viz.add(label_top) label_bot = viz.Label("[0, -1]", 0.5, 1, align_top=False) label_bot.set_scale(2) point_viz.add(label_bot) # [doc-stag-image-pos-center] img = viz.Image() img.set_image(np.full((10, 10), 0.5)) img.set_position(-0.5, 0.5, -0.5, 0.5) point_viz.add(img) # [doc-etag-image-pos-center] # visualize point_viz.update() point_viz.run() # ========================================================================= print("Ex 1.1:\tImages and Labels: Window-aligned images with 2D Image set_hshift() - width-normalized [-1, 1] horizontal shift") # [doc-stag-image-pos-left] # move img to the left img.set_position(0, 1, -0.5, 0.5) img.set_hshift(-1) # [doc-etag-image-pos-left] # visualize point_viz.update() point_viz.run() # [doc-stag-image-pos-right] # move img to the right img.set_position(-1, 0, -0.5, 0.5) img.set_hshift(1) # [doc-etag-image-pos-right] # visualize point_viz.update() point_viz.run() # [doc-stag-image-pos-right-bottom] # move img to the right bottom img.set_position(-1, 0, -1, 0) img.set_hshift(1) # [doc-etag-image-pos-right-bottom] # visualize point_viz.update() point_viz.run() # remove_objs(point_viz, [label_top, label_mid, label_bot, img]) remove_objs(point_viz, [label_top, label_bot, img]) # ======================================= print("Ex 1.2:\tImages and Labels: Lidar Scan Fields as Images") # [doc-stag-scan-fields-images] scan = next(scans) img_aspect = (meta.beam_altitude_angles[0] - meta.beam_altitude_angles[-1]) / 360.0 img_screen_height = 0.4 # [0..2] img_screen_len = img_screen_height / img_aspect # prepare field data ranges = scan.field(client.ChanField.RANGE) ranges = client.destagger(meta, ranges) ranges = np.divide(ranges, np.amax(ranges), dtype=np.float32) signal = scan.field(client.ChanField.SIGNAL) signal = client.destagger(meta, signal) signal = np.divide(signal, np.amax(signal), dtype=np.float32) # creating Image viz elements range_img = viz.Image() range_img.set_image(ranges) # top center position range_img.set_position(-img_screen_len / 2, img_screen_len / 2, 1 - img_screen_height, 1) point_viz.add(range_img) signal_img = viz.Image() signal_img.set_image(signal) img_aspect = (meta.beam_altitude_angles[0] - meta.beam_altitude_angles[-1]) / 360.0 img_screen_height = 0.4 # [0..2] img_screen_len = img_screen_height / img_aspect # bottom center position signal_img.set_position(-img_screen_len / 2, img_screen_len / 2, -1, -1 + img_screen_height) point_viz.add(signal_img) # [doc-etag-scan-fields-images] # visualize point_viz.update() point_viz.run() print("Ex 1.3:\tImages and Labels: Adding labels") # [doc-stag-scan-fields-images-labels] range_label = viz.Label(str(client.ChanField.RANGE), 0.5, 0, align_top=True) range_label.set_scale(1) point_viz.add(range_label) signal_label = viz.Label(str(client.ChanField.SIGNAL), 0.5, 1 - img_screen_height / 2, align_top=True) signal_label.set_scale(1) point_viz.add(signal_label) # [doc-etag-scan-fields-images-labels] # visualize point_viz.update() point_viz.run() # =============================================================== print("Ex 2.0:\tPoint Clouds: As Structured Points") # [doc-stag-scan-structured] cloud_scan = viz.Cloud(meta) cloud_scan.set_range(scan.field(client.ChanField.RANGE)) cloud_scan.set_key(signal) point_viz.add(cloud_scan) # [doc-etag-scan-structured] # visualize point_viz.update() point_viz.run() remove_objs(point_viz, [cloud_scan]) # =============================================================== print("Ex 2.1:\tPoint Clouds: As Unstructured Points") # [doc-stag-scan-unstructured] # transform scan data to 3d points xyzlut = client.XYZLut(meta) xyz = xyzlut(scan.field(client.ChanField.RANGE)) cloud_xyz = viz.Cloud(xyz.shape[0] * xyz.shape[1]) cloud_xyz.set_xyz(np.reshape(xyz, (-1, 3))) cloud_xyz.set_key(signal.ravel()) point_viz.add(cloud_xyz) # [doc-etag-scan-unstructured] point_viz.camera.dolly(150) # visualize point_viz.update() point_viz.run() # ======================================================= print("Ex 2.2:\tPoint Clouds: Custom Axes Helper as Unstructured Points") # [doc-stag-axes-helper] # basis vectors x_ = np.array([1, 0, 0]).reshape((-1, 1)) y_ = np.array([0, 1, 0]).reshape((-1, 1)) z_ = np.array([0, 0, 1]).reshape((-1, 1)) axis_n = 100 line = np.linspace(0, 1, axis_n).reshape((1, -1)) # basis vector to point cloud axis_points = np.hstack((x_ @ line, y_ @ line, z_ @ line)).transpose() # colors for basis vectors axis_color_mask = np.vstack(( np.full((axis_n, 4), [1, 0.1, 0.1, 1]), np.full((axis_n, 4), [0.1, 1, 0.1, 1]), np.full((axis_n, 4), [0.1, 0.1, 1, 1]))) cloud_axis = viz.Cloud(axis_points.shape[0]) cloud_axis.set_xyz(axis_points) cloud_axis.set_key(np.full(axis_points.shape[0], 0.5)) cloud_axis.set_mask(axis_color_mask) cloud_axis.set_point_size(3) point_viz.add(cloud_axis) # [doc-etag-axes-helper] point_viz.camera.dolly(50) # visualize point_viz.update() point_viz.run() remove_objs(point_viz, [ range_img, range_label, signal_img, signal_label, cloud_axis, cloud_xyz ]) # =============================================================== print("Ex 2.3:\tPoint Clouds: the LidarScanViz class") # [doc-stag-lidar-scan-viz] # Creating LidarScan visualizer (3D point cloud + field images on top) ls_viz = viz.LidarScanViz(meta, point_viz) # adding scan to the lidar scan viz ls_viz.scan = scan # refresh viz data ls_viz.draw() # visualize # update() is not needed for LidatScanViz because it's doing it internally point_viz.run() # [doc-etag-lidar-scan-viz] # =================================================== print("Ex 3.0:\tAugmenting point clouds with 3D Labels") # [doc-stag-lidar-scan-viz-labels] # Adding 3D Labels label1 = viz.Label("Label1: [1, 2, 4]", 1, 2, 4) point_viz.add(label1) label2 = viz.Label("Label2: [2, 1, 4]", 2, 1, 4) label2.set_scale(2) point_viz.add(label2) label3 = viz.Label("Label3: [4, 2, 1]", 4, 2, 1) label3.set_scale(3) point_viz.add(label3) # [doc-etag-lidar-scan-viz-labels] point_viz.camera.dolly(-100) # visualize point_viz.update() point_viz.run() # =============================================== print("Ex 4.0:\tOverlay 2D Images and 2D Labels") # [doc-stag-overlay-images-labels] # Adding image 1 with aspect ratio preserved img = viz.Image() img_data = make_checker_board(10, (2, 4)) mask_data = np.zeros((30, 30, 4)) mask_data[:15, :15] = np.array([1, 0, 0, 1]) img.set_mask(mask_data) img.set_image(img_data) ypos = (0, 0.5) xlen = (ypos[1] - ypos[0]) * img_data.shape[1] / img_data.shape[0] xpos = (0, xlen) img.set_position(*xpos, *ypos) img.set_hshift(-0.5) point_viz.add(img) # Adding Label for image 1: positioned at bottom left corner img_label = viz.Label("ARRrrr!", 0.25, 0.5) img_label.set_rgba((1.0, 1.0, 0.0, 1)) img_label.set_scale(2) point_viz.add(img_label) # Adding image 2: positioned to the right of the window img2 = viz.Image() img_data2 = make_checker_board(10, (4, 2)) mask_data2 = np.zeros((30, 30, 4)) mask_data2[15:25, 15:25] = np.array([0, 1, 0, 0.5]) img2.set_mask(mask_data2) img2.set_image(img_data2) ypos2 = (0, 0.5) xlen2 = (ypos2[1] - ypos2[0]) * img_data2.shape[1] / img_data2.shape[0] xpos2 = (-xlen2, 0) img2.set_position(*xpos2, *ypos2) img2.set_hshift(1.0) point_viz.add(img2) # Adding Label for image 2: positioned at top left corner img_label2 = viz.Label("Second", 1.0, 0.25, align_top=True, align_right=True) img_label2.set_rgba((0.0, 1.0, 1.0, 1)) img_label2.set_scale(1) point_viz.add(img_label2) # [doc-etag-overlay-images-labels] # visualize point_viz.update() point_viz.run() # =============================================================== print("Ex 5.0:\tAdding key handlers: 'R' for random camera dolly") # [doc-stag-key-handlers] def handle_dolly_random(ctx, key, mods) -> bool: if key == 82: # key R dolly_num = random.randrange(-15, 15) print(f"Random Dolly: {dolly_num}") point_viz.camera.dolly(dolly_num) point_viz.update() return True point_viz.push_key_handler(handle_dolly_random) # [doc-etag-key-handlers] # visualize point_viz.update() point_viz.run()
def scan(meta) -> client.LidarScan: bin_path = path.join(DATA_DIR, "os-992011000121_data.bin") with open(bin_path, 'rb') as b: source = digest.LidarBufStream(b, meta) scans = client.Scans(source) return next(iter(scans))
def pcap_to_csv(source: client.PacketSource, metadata: client.SensorInfo, num: int = 0, csv_dir: str = ".", csv_base: str = "pcap_out", csv_ext: str = "csv") -> None: """Write scans from a pcap to csv files (one per lidar scan). The number of saved lines per csv file is always H x W, which corresponds to a full 2D image representation of a lidar scan. Each line in a csv file is (for LEGACY profile): TIMESTAMP, RANGE (mm), SIGNAL, NEAR_IR, REFLECTIVITY, X (mm), Y (mm), Z (mm) If ``csv_ext`` ends in ``.gz``, the file is automatically saved in compressed gzip format. :func:`.numpy.loadtxt` can be used to read gzipped files transparently back to :class:`.numpy.ndarray`. Args: source: PacketSource from pcap metadata: associated SensorInfo for PacketSource num: number of scans to save from pcap to csv files csv_dir: path to the directory where csv files will be saved csv_base: string to use as the base of the filename for pcap output csv_ext: file extension to use, "csv" by default """ # ensure that base csv_dir exists if not os.path.exists(csv_dir): os.makedirs(csv_dir) # construct csv header and data format def get_fields_info(scan: client.LidarScan) -> Tuple[str, List[str]]: field_names = 'TIMESTAMP (ns)' field_fmts = ['%d'] for chan_field in scan.fields: field_names += f', {chan_field}' if chan_field in [client.ChanField.RANGE, client.ChanField.RANGE2]: field_names += ' (mm)' field_fmts.append('%d') field_names += ', X (mm), Y (mm), Z (mm)' field_fmts.extend(3 * ['%d']) return field_names, field_fmts field_names: str = '' field_fmts: List[str] = [] # [doc-stag-pcap-to-csv] from itertools import islice # precompute xyzlut to save computation in a loop xyzlut = client.XYZLut(metadata) # create an iterator of LidarScans from pcap and bound it if num is specified scans = iter(client.Scans(source)) if num: scans = islice(scans, num) for idx, scan in enumerate(scans): # initialize the field names for csv header if not field_names or not field_fmts: field_names, field_fmts = get_fields_info(scan) # copy per-column timestamps for each channel timestamps = np.tile(scan.timestamp, (scan.h, 1)) # grab channel data fields_values = [scan.field(ch) for ch in scan.fields] # use integer mm to avoid loss of precision casting timestamps xyz = (xyzlut(scan) * 1000).astype(np.int64) # get all data as one H x W x 8 int64 array for savetxt() frame = np.dstack((timestamps, *fields_values, xyz)) # not necessary, but output points in "image" vs. staggered order frame = client.destagger(metadata, frame) # write csv out to file csv_path = os.path.join(csv_dir, f'{csv_base}_{idx:06d}.{csv_ext}') print(f'write frame #{idx}, to file: {csv_path}') header = '\n'.join([f'frame num: {idx}', field_names]) np.savetxt(csv_path, frame.reshape(-1, frame.shape[2]), fmt=field_fmts, delimiter=',', header=header)
- a proxy run()/quit() on ls_viz would be useful - maybe: ls_viz could initialize underlying viz + expose it - point_viz.run() twice is broken - ideally, run() would open/close window - auto camera movement example? """ from ouster import client, pcap from ouster.sdk import viz meta_path = "/mnt/aux/test_drives/OS1_128_2048x10.json" pcap_path = "/mnt/aux/test_drives/OS1_128_2048x10.pcap" meta = client.SensorInfo(open(meta_path).read()) packets = pcap.Pcap(pcap_path, meta) scans = iter(client.Scans(packets)) point_viz = viz.PointViz("Example Viz") ls_viz = viz.LidarScanViz(meta, point_viz) ls_viz.scan = next(scans) ls_viz.draw() print("Showing first frame, close visuzlier window to continue") point_viz.run() ls_viz.scan = next(scans) ls_viz.draw() print("Showing second frame, close visuzlier window to continue") point_viz.run() # won't work on macos, but convenient:
def test_scans_multi(lidar_stream: client.PacketSource) -> None: """Test batching multiple scans.""" scans = take(10, client.Scans(lidar_stream)) assert list(map(lambda s: s.frame_id, scans)) == list(range(10))
def pcap_to_csv(pcap_path: str, metadata_path: str, num: int = 0, csv_dir: str = ".", csv_prefix: str = "pcap_out", csv_ext: str = "csv") -> None: """Write scans from pcap file (*pcap_path*) to plain csv files (one per lidar scan). If the *csv_ext* ends in ``.gz``, the file is automatically saved in compressed gzip format. :func:`.numpy.loadtxt` can be used to read gzipped files transparently back to :class:`.numpy.ndarray`. Number of saved lines per csv file is always [H x W], which corresponds to a full 2D image representation of a lidar scan. Each line in a csv file is: RANGE (mm), SIGNAL, NEAR_IR, REFLECTIVITY, X (m), Y (m), Z (m) Args: pcap_path: path to the pcap file metadata_path: path to the .json with metadata (aka :class:`.SensorInfo`) num: number of scans to save from pcap to csv files csv_dir: path to the directory where csv files will be saved csv_prefix: the filename prefix that will be appended with frame number and *csv_ext* csv_ext: file extension to use. If it ends with ``.gz`` the output is gzip compressed """ from itertools import islice # ensure that base csv_dir exists if not os.path.exists(csv_dir): os.makedirs(csv_dir) metadata = read_metadata(metadata_path) source = pcap.Pcap(pcap_path, metadata) # [doc-stag-pcap-to-csv] field_names = 'RANGE (mm), SIGNAL, NEAR_IR, REFLECTIVITY, X (m), Y (m), Z (m)' field_fmts = ['%d', '%d', '%d', '%d', '%.8f', '%.8f', '%.8f'] channels = [ client.ChanField.RANGE, client.ChanField.SIGNAL, client.ChanField.NEAR_IR, client.ChanField.REFLECTIVITY ] with closing(pcap.Pcap(pcap_path, metadata)) as source: # precompute xyzlut to save computation in a loop xyzlut = client.XYZLut(metadata) # create an iterator of LidarScans from pcap and bound it if num is specified scans = iter(client.Scans(source)) if num: scans = islice(scans, num) for idx, scan in enumerate(scans): fields_values = [scan.field(ch) for ch in channels] xyz = xyzlut(scan) # get lidar data as one frame of [H x W x 7], "fat" 2D image frame = np.dstack((*fields_values, xyz)) frame = client.destagger(metadata, frame) csv_path = os.path.join(csv_dir, f'{csv_prefix}_{idx:06d}.{csv_ext}') header = '\n'.join([ f'pcap file: {pcap_path}', f'frame num: {idx}', f'metadata file: {metadata_path}', field_names ]) print(f'write frame #{idx}, to file: {csv_path}') np.savetxt(csv_path, np.reshape(frame, (-1, frame.shape[2])), fmt=field_fmts, delimiter=',', header=header)