def bpprop(model, samples, label): num_layers = 6 num_samples = samples.shape[-1] fc_shape = [512, num_samples] acts = [None] * num_layers errs = [None] * num_layers weightgrad = [None] * len(model.weights) biasgrad = [None] * len(model.bias) acts[0] = samples acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0])) acts[2] = model.poolings[0].ff(acts[1]) acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1])) acts[4] = model.poolings[1].ff(acts[3]) acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2] out = conv.softmax(acts[5], conv.soft_op.instance) errs[5] = out - label errs[4] = (model.weights[2].trans() * errs[5]).reshape(acts[4].shape) errs[3] = ele.relu_back(model.poolings[1].bp(errs[4], acts[4], acts[3]), acts[3]) errs[2] = model.convs[1].bp(errs[3], acts[2], model.weights[1]) errs[1] = ele.relu_back(model.poolings[0].bp(errs[2], acts[2], acts[1]), acts[1]) weightgrad[2] = errs[5] * acts[4].reshape(fc_shape).trans() biasgrad[2] = errs[5].sum(1) weightgrad[1] = model.convs[1].weight_grad(errs[3], acts[2], model.weights[1]) biasgrad[1] = model.convs[1].bias_grad(errs[3]) weightgrad[0] = model.convs[0].weight_grad(errs[1], acts[0], model.weights[0]) biasgrad[0] = model.convs[0].bias_grad(errs[1]) return (out, weightgrad, biasgrad)
def train(model, samples, label): num_layers = 9 num_samples = samples.shape[-1] fc_shape = [512, num_samples] acts = [None] * num_layers sens = [None] * num_layers weightgrad = [None] * len(model.weights) biasgrad = [None] * len(model.bias) acts[0] = samples acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0])) acts[2] = model.poolings[0].ff(acts[1]) acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1])) acts[4] = model.poolings[1].ff(acts[3]) acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2] out = conv.softmax(acts[5], conv.soft_op.instance) sens[5] = out - label sens[4] = (model.weights[2].trans() * sens[5]).reshape(acts[4].shape) sens[3] = ele.relu_back(model.poolings[1].bp(sens[4], acts[4], acts[3]), acts[3]) sens[2] = model.convs[1].bp(sens[3], model.weights[1]) sens[1] = ele.relu_back(model.poolings[0].bp(sens[2], acts[2], acts[1]), acts[1]) weightgrad[2] = sens[5] * acts[4].reshape(fc_shape).trans() biasgrad[2] = sens[5].sum(1) weightgrad[1] = model.convs[1].weight_grad(sens[3], acts[2]) biasgrad[1] = model.convs[1].bias_grad(sens[3]) weightgrad[0] = model.convs[0].weight_grad(sens[1], acts[0]) biasgrad[0] = model.convs[0].bias_grad(sens[1]) return (out, weightgrad, biasgrad)
def run(self): (train_data, test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size) np.set_printoptions(linewidth=200) num_test_samples = test_data[0].shape[0] (test_samples, test_labels) = map(lambda npdata: owl.from_numpy(npdata), test_data) count = 1 owl.set_device(self.gpu) for epoch in range(self.num_epochs): print '---Start epoch #%d' % epoch # train for (mb_samples, mb_labels) in train_data: num_samples = mb_samples.shape[0] a1 = owl.from_numpy(mb_samples) target = owl.from_numpy(mb_labels) # ff a2 = ele.relu(self.w1 * a1 + self.b1) a3 = self.w2 * a2 + self.b2 # softmax & error out = co.softmax(a3) s3 = out - target # bp s2 = self.w2.trans() * s3 s2 = ele.relu_back(s2, a2) # grad gw1 = s2 * a1.trans() / num_samples gb1 = s2.sum(1) / num_samples gw2 = s3 * a2.trans() / num_samples gb2 = s3.sum(1) / num_samples # update self.w1 -= self.eps_w * gw1 self.w2 -= self.eps_w * gw2 self.b1 -= self.eps_b * gb1 self.b2 -= self.eps_b * gb2 if (count % 40 == 0): correct = out.argmax(0) - target.argmax(0) val = correct.to_numpy() print 'Training error:', float( np.count_nonzero(val)) / num_samples count = count + 1 # test a1 = test_samples a2 = ele.relu(self.w1 * a1 + self.b1) a3 = self.w2 * a2 + self.b2 correct = a3.argmax(0) - test_labels.argmax(0) val = correct.to_numpy() #print val print 'Testing error:', float( np.count_nonzero(val)) / num_test_samples print '---Finish epoch #%d' % epoch
def test(self): bottom = np.asarray([2,-1,0,1,2,3], np.float32) top = np.asarray([0,0,0,1,2,3], np.float32) top_diff = np.asarray([0.1,0.1,0.1,0.1,0.1,0.1], np.float32) print top_diff.shape expected = np.asarray([0,0,0,0.1,0.1,0.1], np.float32) owldiff = owl.from_numpy(top_diff) owltop = owl.from_numpy(top) test = elewise.relu_back(owldiff,owltop) #print 'Expected\n',expected #print "Actual\n",test.to_numpy() self.assertTrue(np.allclose(expected, test.to_numpy()))
def run(self): (train_data, test_data) = mnist_io.load_mb_from_mat(self.data_file, self.mb_size) np.set_printoptions(linewidth=200) num_test_samples = test_data[0].shape[0] (test_samples, test_labels) = map(lambda npdata : owl.from_numpy(npdata), test_data) count = 1 owl.set_device(self.gpu) for epoch in range(self.num_epochs): print '---Start epoch #%d' % epoch # train for (mb_samples, mb_labels) in train_data: num_samples = mb_samples.shape[0] a1 = owl.from_numpy(mb_samples) target = owl.from_numpy(mb_labels) # ff a2 = ele.relu(self.w1 * a1 + self.b1) a3 = self.w2 * a2 + self.b2 # softmax & error out = co.softmax(a3) s3 = out - target # bp s2 = self.w2.trans() * s3 s2 = ele.relu_back(s2, a2) # grad gw1 = s2 * a1.trans() / num_samples gb1 = s2.sum(1) / num_samples gw2 = s3 * a2.trans() / num_samples gb2 = s3.sum(1) / num_samples # update self.w1 -= self.eps_w * gw1 self.w2 -= self.eps_w * gw2 self.b1 -= self.eps_b * gb1 self.b2 -= self.eps_b * gb2 if (count % 40 == 0): correct = out.max_index(0) - target.max_index(0) val = correct.to_numpy() print 'Training error:', float(np.count_nonzero(val)) / num_samples count = count + 1 # test a1 = test_samples a2 = ele.relu(self.w1 * a1 + self.b1) a3 = self.w2 * a2 + self.b2 correct = a3.max_index(0) - test_labels.max_index(0) val = correct.to_numpy() #print val print 'Testing error:', float(np.count_nonzero(val)) / num_test_samples print '---Finish epoch #%d' % epoch
def bpprop(model, samples, label): num_layers = model.layers num_samples = samples.shape[-1] fc_shape = [model.convolution_output_size, num_samples] acts = [None] * num_layers errs = [None] * num_layers weightgrad = [None] * len(model.weights) biasgrad = [None] * len(model.bias) acts[0] = samples acts[1] = ele.relu(model.convs[0].ff(acts[0], model.weights[0], model.bias[0])) acts[2] = model.poolings[0].ff(acts[1]) acts[3] = ele.relu(model.convs[1].ff(acts[2], model.weights[1], model.bias[1])) acts[4] = model.poolings[1].ff(acts[3]) acts[5] = model.weights[2] * acts[4].reshape(fc_shape) + model.bias[2] acts[6] = model.weights[3] * acts[5] + model.bias[3] out = conv.softmax(acts[6], conv.soft_op.instance) errs[6] = out - label errs[5] = (model.weights[3].trans() * errs[6]).reshape(acts[5].shape) errs[4] = (model.weights[2].trans() * errs[5]).reshape(acts[4].shape) errs[3] = ele.relu_back(model.poolings[1].bp(errs[4], acts[4], acts[3]), acts[3]) errs[2] = model.convs[1].bp(errs[3], acts[2], model.weights[1]) errs[1] = ele.relu_back(model.poolings[0].bp(errs[2], acts[2], acts[1]), acts[1]) weightgrad[3] = errs[6] * acts[5].trans() biasgrad[3] = errs[6].sum(1) weightgrad[2] = errs[5] * acts[4].reshape(fc_shape).trans() biasgrad[2] = errs[5].sum(1) weightgrad[1] = model.convs[1].weight_grad(errs[3], acts[2], model.weights[1]) biasgrad[1] = model.convs[1].bias_grad(errs[3]) weightgrad[0] = model.convs[0].weight_grad(errs[1], acts[0], model.weights[0]) biasgrad[0] = model.convs[0].bias_grad(errs[1]) return (out, weightgrad, biasgrad)
def bp(self, y, phase): return ele.relu_back(y, self.ff_x)
def train_network(model, num_epochs=100, minibatch_size=256, dropout_rate=0.5, eps_w=0.01, eps_b=0.01, mom=0.9, wd=0.0005): gpu = owl.create_gpu_device(1) owl.set_device(gpu) num_layers = 20 count = 0 last = time.time() dp = ImageNetDataProvider( mean_file='/home/minjie/data/imagenet/imagenet_mean.binaryproto', train_db='/home/minjie/data/imagenet/ilsvrc12_train_lmdb', val_db='/home/minjie/data/imagenet/ilsvrc12_val_lmdb', test_db='/home/minjie/data/imagenet/ilsvrc12_test_lmdb') acts = [None] * num_layers sens = [None] * num_layers for i in xrange(num_epochs): print "---------------------Epoch #", i sys.stdout.flush() for (samples, labels) in dp.get_train_mb(minibatch_size): num_samples = samples.shape[0] acts = [None] * num_layers sens = [None] * num_layers # FF acts[0] = owl.from_nparray(samples).reshape( [227, 227, 3, num_samples]) target = owl.from_nparray(labels) acts1 = conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0]) acts[1] = ele.relu( acts1 ) #(conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0])) # conv1 acts[2] = pooling_forward(acts[1], model.pooling_infos[0]) # pool1 acts3 = conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1]) # conv2 acts[3] = ele.relu( acts3 ) #(conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1])) # conv2 acts[4] = pooling_forward(acts[3], model.pooling_infos[1]) # pool2 acts5 = conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2]) # conv3 acts[5] = ele.relu( acts5 ) #(conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2])) # conv3 acts6 = conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3]) # conv4 acts[6] = ele.relu( acts6 ) #(conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3])) # conv4 acts7 = conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4]) # conv5 acts[7] = ele.relu( acts7 ) #(conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4])) # conv5 acts[8] = pooling_forward(acts[7], model.pooling_infos[2]) # pool5 re_acts8 = acts[8].reshape( [np.prod(acts[8].shape[0:3]), num_samples]) acts9 = model.weights[5] * re_acts8 + model.bias[5] # fc6 acts[9] = ele.relu( acts9) #(model.weights[5] * re_acts8 + model.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts10 = model.weights[6] * acts[9] + model.bias[6] # fc7 acts[10] = ele.relu( acts10) #(model.weights[6] * acts[9] + model.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = model.weights[7] * acts[10] + model.bias[7] # fc8 acts[12] = softmax_forward( acts[11].reshape([1000, 1, 1, num_samples]), soft_op.instance).reshape([1000, num_samples]) # prob # error sens[11] = acts[12] - target # BP sens[10] = model.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10], acts10) # relu7 sens[9] = model.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9], acts9) # relu6 sens[8] = (model.weights[5].trans() * sens[9]).reshape( acts[8].shape) # fc6 sens[7] = pooling_backward(sens[8], acts[8], acts[7], model.pooling_infos[2]) # pool5 sens[7] = ele.relu_back(sens[7], acts[7], acts7) # relu5 sens[6] = conv_backward_data(sens[7], model.weights[4], model.conv_infos[4]) # conv5 sens[6] = ele.relu_back(sens[6], acts[6], acts6) # relu4 sens[5] = conv_backward_data(sens[6], model.weights[3], model.conv_infos[3]) # conv4 sens[5] = ele.relu_back(sens[5], acts[5], acts5) # relu3 sens[4] = conv_backward_data(sens[5], model.weights[2], model.conv_infos[2]) # conv3 sens[3] = pooling_backward(sens[4], acts[4], acts[3], model.pooling_infos[1]) # pool2 sens[3] = ele.relu_back(sens[3], acts[3], acts3) # relu2 sens[2] = conv_backward_data(sens[3], model.weights[1], model.conv_infos[1]) # conv2 sens[1] = pooling_backward(sens[2], acts[2], acts[1], model.pooling_infos[0]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1], acts1) # relu1 model.weightsdelta[ 7] = mom * model.weightsdelta[7] - eps_w / num_samples * ( sens[11] * acts[10].trans() + wd * model.weights[7]) model.biasdelta[7] = mom * model.biasdelta[ 7] - eps_b / num_samples * sens[11].sum(1) model.weightsdelta[ 6] = mom * model.weightsdelta[6] - eps_w / num_samples * ( sens[10] * acts[9].trans() + wd * model.weights[6]) model.biasdelta[6] = mom * model.biasdelta[ 6] - eps_b / num_samples * sens[10].sum(1) model.weightsdelta[ 5] = mom * model.weightsdelta[5] - eps_w / num_samples * ( sens[9] * re_acts8.trans() + wd * model.weights[5]) model.biasdelta[5] = mom * model.biasdelta[ 5] - eps_b / num_samples * sens[9].sum(1) model.weightsdelta[ 4] = mom * model.weightsdelta[4] - eps_w / num_samples * ( conv_backward_filter(sens[7], acts[6], model.conv_infos[4]) + wd * model.weights[4]) model.biasdelta[4] = mom * model.biasdelta[ 4] - eps_b / num_samples * conv_backward_bias(sens[7]) model.weightsdelta[ 3] = mom * model.weightsdelta[3] - eps_w / num_samples * ( conv_backward_filter(sens[6], acts[5], model.conv_infos[3]) + wd * model.weights[3]) model.biasdelta[3] = mom * model.biasdelta[ 3] - eps_b / num_samples * conv_backward_bias(sens[6]) model.weightsdelta[ 2] = mom * model.weightsdelta[2] - eps_w / num_samples * ( conv_backward_filter(sens[5], acts[4], model.conv_infos[2]) + wd * model.weights[2]) model.biasdelta[2] = mom * model.biasdelta[ 2] - eps_b / num_samples * conv_backward_bias(sens[5]) model.weightsdelta[ 1] = mom * model.weightsdelta[1] - eps_w / num_samples * ( conv_backward_filter(sens[3], acts[2], model.conv_infos[1]) + wd * model.weights[1]) model.biasdelta[1] = mom * model.biasdelta[ 1] - eps_b / num_samples * conv_backward_bias(sens[3]) model.weightsdelta[ 0] = mom * model.weightsdelta[0] - eps_w / num_samples * ( conv_backward_filter(sens[1], acts[0], model.conv_infos[0]) + wd * model.weights[0]) model.biasdelta[0] = mom * model.biasdelta[ 0] - eps_b / num_samples * conv_backward_bias(sens[1]) for k in range(8): model.weights[k] += model.weightsdelta[k] model.bias[k] += model.biasdelta[k] count = count + 1 if count % 10 == 0: print_training_accuracy(acts[12], target, num_samples) print "time: %s" % (time.time() - last) last = time.time()
def bp(self, y): return ele.relu_back(y, self.ff_x)
def train_one_mb(model, data, label, weightsgrad, biasgrad, dropout_rate): num_samples = data.shape[-1] num_layers = 20 acts = [None] * num_layers sens = [None] * num_layers # FF acts[0] = data acts1 = conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0]) acts[1] = ele.relu(acts1)#(conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0])) # conv1 acts[2] = pooling_forward(acts[1], model.pooling_infos[0]) # pool1 acts3 = conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1]) # conv2 acts[3] = ele.relu(acts3)#(conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1])) # conv2 acts[4] = pooling_forward(acts[3], model.pooling_infos[1]) # pool2 acts5 = conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2]) # conv3 acts[5] = ele.relu(acts5)#(conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2])) # conv3 acts6 = conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3]) # conv4 acts[6] = ele.relu(acts6)#(conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3])) # conv4 acts7 = conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4]) # conv5 acts[7] = ele.relu(acts7)#(conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4])) # conv5 acts[8] = pooling_forward(acts[7], model.pooling_infos[2]) # pool5 re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples]) acts9 = model.weights[5] * re_acts8 + model.bias[5] # fc6 acts[9] = ele.relu(acts9)#(model.weights[5] * re_acts8 + model.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts10 = model.weights[6] * acts[9] + model.bias[6] # fc7 acts[10] = ele.relu(acts10)#(model.weights[6] * acts[9] + model.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = model.weights[7] * acts[10] + model.bias[7] # fc8 acts[12] = softmax_forward(acts[11].reshape([1000, 1, 1, num_samples]), soft_op.instance).reshape([1000, num_samples]) # prob # error sens[11] = acts[12] - label # BP sens[10] = model.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10]) # relu7 sens[9] = model.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9]) # relu6 sens[8] = (model.weights[5].trans() * sens[9]).reshape(acts[8].shape) # fc6 sens[7] = pooling_backward(sens[8], acts[8], acts[7], model.pooling_infos[2]) # pool5 sens[7] = ele.relu_back(sens[7], acts[7]) # relu5 sens[6] = conv_backward_data(sens[7], model.weights[4], model.conv_infos[4]) # conv5 sens[6] = ele.relu_back(sens[6], acts[6]) # relu4 sens[5] = conv_backward_data(sens[6], model.weights[3], model.conv_infos[3]) # conv4 sens[5] = ele.relu_back(sens[5], acts[5]) # relu3 sens[4] = conv_backward_data(sens[5], model.weights[2], model.conv_infos[2]) # conv3 sens[3] = pooling_backward(sens[4], acts[4], acts[3], model.pooling_infos[1]) # pool2 sens[3] = ele.relu_back(sens[3], acts[3]) # relu2 sens[2] = conv_backward_data(sens[3], model.weights[1], model.conv_infos[1]) # conv2 sens[1] = pooling_backward(sens[2], acts[2], acts[1], model.pooling_infos[0]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1]) # relu1 weightsgrad[7] = sens[11] * acts[10].trans() weightsgrad[6] = sens[10] * acts[9].trans() weightsgrad[5] = sens[9] * re_acts8.trans() weightsgrad[4] = conv_backward_filter(sens[7], acts[6], model.conv_infos[4]) weightsgrad[3] = conv_backward_filter(sens[6], acts[5], model.conv_infos[3]) weightsgrad[2] = conv_backward_filter(sens[5], acts[4], model.conv_infos[2]) weightsgrad[1] = conv_backward_filter(sens[3], acts[2], model.conv_infos[1]) weightsgrad[0] = conv_backward_filter(sens[1], acts[0], model.conv_infos[0]) biasgrad[7] = sens[11].sum(1) biasgrad[6] = sens[10].sum(1) biasgrad[5] = sens[9].sum(1) biasgrad[4] = conv_backward_bias(sens[7]) biasgrad[3] = conv_backward_bias(sens[6]) biasgrad[2] = conv_backward_bias(sens[5]) biasgrad[1] = conv_backward_bias(sens[3]) biasgrad[0] = conv_backward_bias(sens[1]) return acts[12]
def train_one_mb(model, data, label, weightsgrad, biasgrad, dropout_rate): num_samples = data.shape[-1] num_layers = 20 acts = [None] * num_layers sens = [None] * num_layers # FF acts[0] = data acts1 = conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0]) acts[1] = ele.relu( acts1 ) #(conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0])) # conv1 acts[2] = pooling_forward(acts[1], model.pooling_infos[0]) # pool1 acts3 = conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1]) # conv2 acts[3] = ele.relu( acts3 ) #(conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1])) # conv2 acts[4] = pooling_forward(acts[3], model.pooling_infos[1]) # pool2 acts5 = conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2]) # conv3 acts[5] = ele.relu( acts5 ) #(conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2])) # conv3 acts6 = conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3]) # conv4 acts[6] = ele.relu( acts6 ) #(conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3])) # conv4 acts7 = conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4]) # conv5 acts[7] = ele.relu( acts7 ) #(conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4])) # conv5 acts[8] = pooling_forward(acts[7], model.pooling_infos[2]) # pool5 re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples]) acts9 = model.weights[5] * re_acts8 + model.bias[5] # fc6 acts[9] = ele.relu( acts9) #(model.weights[5] * re_acts8 + model.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts10 = model.weights[6] * acts[9] + model.bias[6] # fc7 acts[10] = ele.relu( acts10) #(model.weights[6] * acts[9] + model.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = model.weights[7] * acts[10] + model.bias[7] # fc8 acts[12] = softmax_forward(acts[11].reshape([1000, 1, 1, num_samples]), soft_op.instance).reshape([1000, num_samples]) # prob # error sens[11] = acts[12] - label # BP sens[10] = model.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10], acts10) # relu7 sens[9] = model.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9], acts9) # relu6 sens[8] = (model.weights[5].trans() * sens[9]).reshape( acts[8].shape) # fc6 sens[7] = pooling_backward(sens[8], acts[8], acts[7], model.pooling_infos[2]) # pool5 sens[7] = ele.relu_back(sens[7], acts[7], acts7) # relu5 sens[6] = conv_backward_data(sens[7], model.weights[4], model.conv_infos[4]) # conv5 sens[6] = ele.relu_back(sens[6], acts[6], acts6) # relu4 sens[5] = conv_backward_data(sens[6], model.weights[3], model.conv_infos[3]) # conv4 sens[5] = ele.relu_back(sens[5], acts[5], acts5) # relu3 sens[4] = conv_backward_data(sens[5], model.weights[2], model.conv_infos[2]) # conv3 sens[3] = pooling_backward(sens[4], acts[4], acts[3], model.pooling_infos[1]) # pool2 sens[3] = ele.relu_back(sens[3], acts[3], acts3) # relu2 sens[2] = conv_backward_data(sens[3], model.weights[1], model.conv_infos[1]) # conv2 sens[1] = pooling_backward(sens[2], acts[2], acts[1], model.pooling_infos[0]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1], acts1) # relu1 weightsgrad[7] = sens[11] * acts[10].trans() weightsgrad[6] = sens[10] * acts[9].trans() weightsgrad[5] = sens[9] * re_acts8.trans() weightsgrad[4] = conv_backward_filter(sens[7], acts[6], model.conv_infos[4]) weightsgrad[3] = conv_backward_filter(sens[6], acts[5], model.conv_infos[3]) weightsgrad[2] = conv_backward_filter(sens[5], acts[4], model.conv_infos[2]) weightsgrad[1] = conv_backward_filter(sens[3], acts[2], model.conv_infos[1]) weightsgrad[0] = conv_backward_filter(sens[1], acts[0], model.conv_infos[0]) biasgrad[7] = sens[11].sum(1) biasgrad[6] = sens[10].sum(1) biasgrad[5] = sens[9].sum(1) biasgrad[4] = conv_backward_bias(sens[7]) biasgrad[3] = conv_backward_bias(sens[6]) biasgrad[2] = conv_backward_bias(sens[5]) biasgrad[1] = conv_backward_bias(sens[3]) biasgrad[0] = conv_backward_bias(sens[1]) return acts[12]
def train_network(model, num_epochs = 100, minibatch_size=256, dropout_rate = 0.5, eps_w = 0.01, eps_b = 0.01, mom = 0.9, wd = 0.0005): gpu = owl.create_gpu_device(1) owl.set_device(gpu) num_layers = 20 count = 0 last = time.time() dp = ImageNetDataProvider(mean_file='/home/minjie/data/imagenet/imagenet_mean.binaryproto', train_db='/home/minjie/data/imagenet/ilsvrc12_train_lmdb', val_db='/home/minjie/data/imagenet/ilsvrc12_val_lmdb', test_db='/home/minjie/data/imagenet/ilsvrc12_test_lmdb') acts = [None] * num_layers sens = [None] * num_layers for i in xrange(num_epochs): print "---------------------Epoch #", i sys.stdout.flush() for (samples, labels) in dp.get_train_mb(minibatch_size): num_samples = samples.shape[0] acts = [None] * num_layers sens = [None] * num_layers ''' thisimg = samples[0, :] print thisimg imgdata = np.transpose(thisimg.reshape([3, 227*227])).reshape([227, 227, 3]) print imgdata img = Image.fromarray(imgdata.astype(np.uint8)) img.save('testimg.jpg', format='JPEG') exit(0) ''' # FF acts[0] = owl.from_nparray(samples).reshape([227, 227, 3, num_samples]) #print np.array(acts[0].tolist())[0:227*227*3] target = owl.from_nparray(labels) #np.set_printoptions(linewidth=200) #print acts[0].shape, model.weights[0].shape, model.bias[0].shape #im = np.array(acts[0].tolist()).reshape([num_samples, 227, 227, 3]) #print im[0,:,:,0] #print im[0,:,:,1] #print im[0,:,:,2] #print target.max_index(0).tolist()[0:20] #sys.exit() acts1 = conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0]) acts[1] = ele.relu(acts1)#(conv_forward(acts[0], model.weights[0], model.bias[0], model.conv_infos[0])) # conv1 acts[2] = pooling_forward(acts[1], model.pooling_infos[0]) # pool1 acts3 = conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1]) # conv2 acts[3] = ele.relu(acts3)#(conv_forward(acts[2], model.weights[1], model.bias[1], model.conv_infos[1])) # conv2 acts[4] = pooling_forward(acts[3], model.pooling_infos[1]) # pool2 acts5 = conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2]) # conv3 acts[5] = ele.relu(acts5)#(conv_forward(acts[4], model.weights[2], model.bias[2], model.conv_infos[2])) # conv3 acts6 = conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3]) # conv4 acts[6] = ele.relu(acts6)#(conv_forward(acts[5], model.weights[3], model.bias[3], model.conv_infos[3])) # conv4 acts7 = conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4]) # conv5 acts[7] = ele.relu(acts7)#(conv_forward(acts[6], model.weights[4], model.bias[4], model.conv_infos[4])) # conv5 acts[8] = pooling_forward(acts[7], model.pooling_infos[2]) # pool5 re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples]) acts9 = model.weights[5] * re_acts8 + model.bias[5] # fc6 acts[9] = ele.relu(acts9)#(model.weights[5] * re_acts8 + model.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts10 = model.weights[6] * acts[9] + model.bias[6] # fc7 acts[10] = ele.relu(acts10)#(model.weights[6] * acts[9] + model.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = model.weights[7] * acts[10] + model.bias[7] # fc8 acts[12] = softmax_forward(acts[11].reshape([1000, 1, 1, num_samples]), soft_op.instance).reshape([1000, num_samples]) # prob # error sens[11] = acts[12] - target # BP sens[10] = model.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10], acts10) # relu7 sens[9] = model.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9], acts9) # relu6 sens[8] = (model.weights[5].trans() * sens[9]).reshape(acts[8].shape) # fc6 sens[7] = pooling_backward(sens[8], acts[8], acts[7], model.pooling_infos[2]) # pool5 sens[7] = ele.relu_back(sens[7], acts[7], acts7) # relu5 sens[6] = conv_backward_data(sens[7], model.weights[4], model.conv_infos[4]) # conv5 sens[6] = ele.relu_back(sens[6], acts[6], acts6) # relu4 sens[5] = conv_backward_data(sens[6], model.weights[3], model.conv_infos[3]) # conv4 sens[5] = ele.relu_back(sens[5], acts[5], acts5) # relu3 sens[4] = conv_backward_data(sens[5], model.weights[2], model.conv_infos[2]) # conv3 sens[3] = pooling_backward(sens[4], acts[4], acts[3], model.pooling_infos[1]) # pool2 sens[3] = ele.relu_back(sens[3], acts[3], acts3) # relu2 sens[2] = conv_backward_data(sens[3], model.weights[1], model.conv_infos[1]) # conv2 sens[1] = pooling_backward(sens[2], acts[2], acts[1], model.pooling_infos[0]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1], acts1) # relu1 model.weightsdelta[7] = mom * model.weightsdelta[7] - eps_w / num_samples * (sens[11] * acts[10].trans() + wd * model.weights[7]) model.biasdelta[7] = mom * model.biasdelta[7] - eps_b / num_samples * (sens[11].sum(1) + wd * model.bias[7]) model.weightsdelta[6] = mom * model.weightsdelta[6] - eps_w / num_samples * (sens[10] * acts[9].trans() + wd * model.weights[6]) model.biasdelta[6] = mom * model.biasdelta[6] - eps_b / num_samples * (sens[10].sum(1) + wd * model.bias[6]) model.weightsdelta[5] = mom * model.weightsdelta[5] - eps_w / num_samples * (sens[9] * re_acts8.trans() + wd * model.weights[5]) model.biasdelta[5] = mom * model.biasdelta[5] - eps_b / num_samples * (sens[9].sum(1) + wd * model.bias[5]) model.weightsdelta[4] = mom * model.weightsdelta[4] - eps_w / num_samples * (conv_backward_filter(sens[7], acts[6], model.conv_infos[4]) + wd * model.weights[4]) model.biasdelta[4] = mom * model.biasdelta[4] - eps_b / num_samples * (conv_backward_bias(sens[7]) + wd * model.bias[4]) model.weightsdelta[3] = mom * model.weightsdelta[3] - eps_w / num_samples * (conv_backward_filter(sens[6], acts[5], model.conv_infos[3]) + wd * model.weights[3]) model.biasdelta[3] = mom * model.biasdelta[3] - eps_b / num_samples * (conv_backward_bias(sens[6]) + wd * model.bias[3]) model.weightsdelta[2] = mom * model.weightsdelta[2] - eps_w / num_samples * (conv_backward_filter(sens[5], acts[4], model.conv_infos[2]) + wd * model.weights[2]) model.biasdelta[2] = mom * model.biasdelta[2] - eps_b / num_samples * (conv_backward_bias(sens[5]) + wd * model.bias[2]) model.weightsdelta[1] = mom * model.weightsdelta[1] - eps_w / num_samples * (conv_backward_filter(sens[3], acts[2], model.conv_infos[1]) + wd * model.weights[1]) model.biasdelta[1] = mom * model.biasdelta[1] - eps_b / num_samples * (conv_backward_bias(sens[3]) + wd * model.bias[1]) model.weightsdelta[0] = mom * model.weightsdelta[0] - eps_w / num_samples * (conv_backward_filter(sens[1], acts[0], model.conv_infos[0]) + wd * model.weights[0]) model.biasdelta[0] = mom * model.biasdelta[0] - eps_b / num_samples * (conv_backward_bias(sens[1]) + wd * model.bias[0]) for k in range(8): model.weights[k] += model.weightsdelta[k] model.bias[k] += model.biasdelta[k] count = count + 1 #if count % 2 == 0: #acts[18].start_eval() if count % 10 == 0: print_training_accuracy(acts[12], target, num_samples) print "time: %s" % (time.time() - last) last = time.time()
def train_one_mb(self, data, label, dropout_rate): num_samples = data.shape[-1] num_layers = 12 acts = [None] * num_layers sens = [None] * num_layers weightsgrad = [None] * self.num_weights biasgrad = [None] * self.num_weights # FF acts[0] = data acts[1] = ele.relu(self.convs[0].ff(acts[0], self.weights[0], self.bias[0])) # conv1 acts[2] = self.poolings[0].ff(acts[1]) # pool1 acts[3] = ele.relu(self.convs[1].ff(acts[2], self.weights[1], self.bias[1])) # conv2 acts[4] = self.poolings[1].ff(acts[3]) # pool2 acts[5] = ele.relu(self.convs[2].ff(acts[4], self.weights[2], self.bias[2])) # conv3 acts[6] = ele.relu(self.convs[3].ff(acts[5], self.weights[3], self.bias[3])) # conv4 acts[7] = ele.relu(self.convs[4].ff(acts[6], self.weights[4], self.bias[4])) # conv5 acts[8] = self.poolings[2].ff(acts[7]) # pool5 re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples]) acts[9] = ele.relu(self.weights[5] * re_acts8 + self.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts[10] = ele.relu(self.weights[6] * acts[9] + self.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = self.weights[7] * acts[10] + self.bias[7] # fc8 out = co.softmax(acts[11], co.soft_op.instance) # prob sens[11] = out - label sens[10] = self.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10]) # relu7 sens[9] = self.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9]) # relu6 sens[8] = (self.weights[5].trans() * sens[9]).reshape( acts[8].shape) # fc6 sens[7] = ele.relu_back(self.poolings[2].bp(sens[8], acts[8], acts[7]), acts[7]) # pool5, relu5 sens[6] = ele.relu_back(self.convs[4].bp(sens[7], self.weights[4]), acts[6]) # conv5, relu4 sens[5] = ele.relu_back(self.convs[3].bp(sens[6], self.weights[3]), acts[5]) # conv4, relu3 sens[4] = self.convs[2].bp(sens[5], self.weights[2]) # conv3 sens[3] = ele.relu_back(self.poolings[1].bp(sens[4], acts[4], acts[3]), acts[3]) # pool2, relu2 sens[2] = self.convs[1].bp(sens[3], self.weights[1]) # conv2 sens[1] = self.poolings[0].bp(sens[2], acts[2], acts[1]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1]) # relu1 weightsgrad[7] = sens[11] * acts[10].trans() weightsgrad[6] = sens[10] * acts[9].trans() weightsgrad[5] = sens[9] * re_acts8.trans() weightsgrad[4] = self.convs[4].weight_grad(sens[7], acts[6]) weightsgrad[3] = self.convs[3].weight_grad(sens[6], acts[5]) weightsgrad[2] = self.convs[2].weight_grad(sens[5], acts[4]) weightsgrad[1] = self.convs[1].weight_grad(sens[3], acts[2]) weightsgrad[0] = self.convs[0].weight_grad(sens[1], acts[0]) biasgrad[7] = sens[11].sum(1) biasgrad[6] = sens[10].sum(1) biasgrad[5] = sens[9].sum(1) biasgrad[4] = self.convs[4].bias_grad(sens[7]) biasgrad[3] = self.convs[3].bias_grad(sens[6]) biasgrad[2] = self.convs[2].bias_grad(sens[5]) biasgrad[1] = self.convs[1].bias_grad(sens[3]) biasgrad[0] = self.convs[0].bias_grad(sens[1]) return (out, weightsgrad, biasgrad)
def train_one_mb(self, data, label, dropout_rate): num_samples = data.shape[-1] num_layers = 12 acts = [None] * num_layers sens = [None] * num_layers weightsgrad = [None] * self.num_weights biasgrad = [None] * self.num_weights # FF acts[0] = data acts[1] = ele.relu(self.convs[0].ff(acts[0], self.weights[0], self.bias[0])) # conv1 acts[2] = self.poolings[0].ff(acts[1]) # pool1 acts[3] = ele.relu(self.convs[1].ff(acts[2], self.weights[1], self.bias[1])) # conv2 acts[4] = self.poolings[1].ff(acts[3]) # pool2 acts[5] = ele.relu(self.convs[2].ff(acts[4], self.weights[2], self.bias[2])) # conv3 acts[6] = ele.relu(self.convs[3].ff(acts[5], self.weights[3], self.bias[3])) # conv4 acts[7] = ele.relu(self.convs[4].ff(acts[6], self.weights[4], self.bias[4])) # conv5 acts[8] = self.poolings[2].ff(acts[7]) # pool5 re_acts8 = acts[8].reshape([np.prod(acts[8].shape[0:3]), num_samples]) acts[9] = ele.relu(self.weights[5] * re_acts8 + self.bias[5]) # fc6 mask6 = owl.randb(acts[9].shape, dropout_rate) acts[9] = ele.mult(acts[9], mask6) # drop6 acts[10] = ele.relu(self.weights[6] * acts[9] + self.bias[6]) # fc7 mask7 = owl.randb(acts[10].shape, dropout_rate) acts[10] = ele.mult(acts[10], mask7) # drop7 acts[11] = self.weights[7] * acts[10] + self.bias[7] # fc8 out = co.softmax(acts[11], co.soft_op.instance) # prob sens[11] = out - label sens[10] = self.weights[7].trans() * sens[11] # fc8 sens[10] = ele.mult(sens[10], mask7) # drop7 sens[10] = ele.relu_back(sens[10], acts[10]) # relu7 sens[9] = self.weights[6].trans() * sens[10] sens[9] = ele.mult(sens[9], mask6) # drop6 sens[9] = ele.relu_back(sens[9], acts[9]) # relu6 sens[8] = (self.weights[5].trans() * sens[9]).reshape(acts[8].shape) # fc6 sens[7] = ele.relu_back(self.poolings[2].bp(sens[8], acts[8], acts[7]), acts[7]) # pool5, relu5 sens[6] = ele.relu_back(self.convs[4].bp(sens[7], acts[6], self.weights[4]), acts[6]) # conv5, relu4 sens[5] = ele.relu_back(self.convs[3].bp(sens[6], acts[5], self.weights[3]), acts[5]) # conv4, relu3 sens[4] = self.convs[2].bp(sens[5], acts[4], self.weights[2]) # conv3 sens[3] = ele.relu_back(self.poolings[1].bp(sens[4], acts[4], acts[3]), acts[3]) # pool2, relu2 sens[2] = self.convs[1].bp(sens[3], acts[2], self.weights[1]) # conv2 sens[1] = self.poolings[0].bp(sens[2], acts[2], acts[1]) # pool1 sens[1] = ele.relu_back(sens[1], acts[1]) # relu1 weightsgrad[7] = sens[11] * acts[10].trans() weightsgrad[6] = sens[10] * acts[9].trans() weightsgrad[5] = sens[9] * re_acts8.trans() weightsgrad[4] = self.convs[4].weight_grad(sens[7], acts[6], self.weights[4]) weightsgrad[3] = self.convs[3].weight_grad(sens[6], acts[5], self.weights[3]) weightsgrad[2] = self.convs[2].weight_grad(sens[5], acts[4], self.weights[2]) weightsgrad[1] = self.convs[1].weight_grad(sens[3], acts[2], self.weights[1]) weightsgrad[0] = self.convs[0].weight_grad(sens[1], acts[0], self.weights[0]) biasgrad[7] = sens[11].sum(1) biasgrad[6] = sens[10].sum(1) biasgrad[5] = sens[9].sum(1) biasgrad[4] = self.convs[4].bias_grad(sens[7]) biasgrad[3] = self.convs[3].bias_grad(sens[6]) biasgrad[2] = self.convs[2].bias_grad(sens[5]) biasgrad[1] = self.convs[1].bias_grad(sens[3]) biasgrad[0] = self.convs[0].bias_grad(sens[1]) return (out, weightsgrad, biasgrad)
def train_one_mb(model, data, label, weightsgrad, biasgrad): #Be careful, python list is like pointer acts = [None] * model.num_layers sens = [None] * model.num_layers beforeacts = [None] * model.num_layers beforedropout = [None] * model.num_layers dropoutmask = [None] * model.num_layers before2fullyact = [] conv2fullylayer = model.num_layers acts[0] = data num_samples = data.shape[-1] num_class = label.shape[0] #find the reshape layer for i in range(0, model.num_layers - 1): #if from conv 2 fully if (i < model.num_layers - 2) and ( model.ff_infos[i]['ff_type'] == 'conv' or model.ff_infos[i]['ff_type'] == 'pooling') and ( model.ff_infos[i + 1]['ff_type'] == 'fully'): conv2fullylayer = i + 1 break for i in range(0, model.num_layers - 1): if model.ff_infos[i]['ff_type'] == 'conv': #print '%d conv ff' % (i) beforeacts[i + 1] = conv_forward(acts[i], model.weights[i], model.bias[i], model.ff_infos[i]['conv_info']) elif model.ff_infos[i]['ff_type'] == 'pooling': #print '%d pooling ff' % (i) beforeacts[i + 1] = pooling_forward( acts[i], model.ff_infos[i]['pooling_info']) else: #print '%d fully ff' % (i) beforeacts[i + 1] = model.weights[i] * acts[i] + model.bias[i] #activation function if model.ff_infos[i]['neuron_type'] == 'RELU': #print '%d relu ff' % (i) acts[i + 1] = ele.relu(beforeacts[i + 1]) elif model.ff_infos[i]['neuron_type'] == 'SOFTMAX': #print '%d softmax ff' % (i) acts[i + 1] = softmax_forward( beforeacts[i + 1].reshape([num_class, 1, 1, num_samples]), soft_op.instance).reshape([num_class, num_samples]) # prob else: #print '%d linear ff' % (i) acts[i + 1] = beforeacts[i + 1] #dropout beforedropout[i + 1] = acts[i + 1] if model.ff_infos[i]['dropout_rate'] > 0: #print '%d dropout ff' % (i) dropoutmask[i + 1] = owl.randb(acts[i + 1].shape, model.ff_infos[i]['dropout_rate']) acts[i + 1] = ele.mult(beforedropout[i + 1], dropoutmask[i + 1]) if i + 1 == conv2fullylayer: before2fullyact = acts[i + 1] acts[i + 1] = before2fullyact.reshape( [np.prod(before2fullyact.shape[0:3]), num_samples]) # error sens[model.num_layers - 1] = acts[model.num_layers - 1] - label #bp for i in range(model.num_layers - 1, 0, -1): if model.ff_infos[i - 1]['ff_type'] == 'conv': sens[i - 1] = conv_backward_data( sens[i], model.weights[i - 1], model.ff_infos[i - 1]['conv_info']) elif model.ff_infos[i - 1]['ff_type'] == 'pooling': if i == conv2fullylayer: sens[i - 1] = pooling_backward( sens[i].reshape(before2fullyact.shape), before2fullyact, acts[i - 1], model.ff_infos[i - 1]['pooling_info']) else: sens[i - 1] = pooling_backward( sens[i], acts[i], acts[i - 1], model.ff_infos[i - 1]['pooling_info']) else: sens[i - 1] = model.weights[i - 1].trans() * sens[i] if i - 2 >= 0: #dropout if model.ff_infos[i - 2]['dropout_rate'] > 0: sens[i - 1] = ele.mult(sens[i - 1], dropoutmask[i - 1]) #backact if model.ff_infos[i - 2]['neuron_type'] == 'RELU': sens[i - 1] = ele.relu_back(sens[i - 1], beforedropout[i - 1], beforeacts[i - 1]) else: sens[i - 1] = sens[i - 1] #gradient for i in range(0, model.num_layers - 1): if model.ff_infos[i]['ff_type'] == 'conv': weightsgrad[i] = conv_backward_filter( sens[i + 1], acts[i], model.ff_infos[i]['conv_info']) biasgrad[i] = conv_backward_bias(sens[i + 1]) elif model.ff_infos[i]['ff_type'] == 'fully': weightsgrad[i] = sens[i + 1] * acts[i].trans() biasgrad[i] = sens[i + 1].sum(1) else: continue return acts[model.num_layers - 1]
import owl import owl.elewise as ele import numpy as np import demo_common x = owl.randn([784, 256], 0.0, 0.01) w = owl.randn([512, 784], 0.0, 0.01) b = owl.zeros([512, 1]) y = ele.relu(w * x + b) print y.to_numpy() e = owl.randn([512, 256], 0.0, 0.01) ey = ele.relu_back(e, y) ex = w.trans() * ey print ex.to_numpy()