def find_smallest_counter(): curr_comp = 9 while True: primes = [i for i in prime_gen(max_val=curr_comp + 1)] if curr_comp not in primes and not any( is_square((curr_comp - p) / 2) for p in primes): return curr_comp curr_comp += 2
def find_smallest_counter(): curr_comp = 9 while True: primes = [i for i in prime_gen(max_val=curr_comp + 1)] if curr_comp not in primes and not any(is_square((curr_comp - p)/2) for p in primes): return curr_comp curr_comp += 2
def is_triangular(tn): '''Leverages: The inverse of triangular: n = -1/2 + 1/2 * sqrt(1 + 8 * tn) Therefore, 1 + 8 * pn must be square for tn to be triangular. Also, since n must be an integer, the evaluated sqrt must be odd ''' special_factor = 1 + 8 * tn if is_square(special_factor): given_root = int(sqrt(special_factor)) if given_root % 2 == 1: return True return False
def is_hexagonal(hn): '''Leverages: The inverse of hexagonal: n = -1/4 + 1/4 * sqrt(1 + 8 * hn) Therefore, 1 + 8 * hn must be square for hn to be hexagonal. Also, since n must be an integer, the evaluated sqrt must: Have a modulus of 3 with 4 ''' special_factor = 1 + 8 * hn if is_square(special_factor): given_root = int(sqrt(special_factor)) if given_root % 4 == 3: return True return False
def is_pentagonal(pn): '''Leverages: The inverse of pentagonal: n = 1/6 + 1/6 * sqrt(1 + 24 * pn) Therefore, 1 + 24 * pn must be square for pn to be pentagonal. Also, since n must be an integer, the evaluated sqrt must: Have a modulus of 5 with 6 ''' special_factor = 1 + 24 * pn if is_square(special_factor): given_root = int(sqrt(special_factor)) if given_root % 6 == 5: return True return False