def qntpair(symbol, period, deltaP, deltaN, rwindow, mwindow, pairlist): title = ['PAIR', 'NORM', 'DWSTAT'] maxper = period + rwindow + mwindow - 1 table = [] datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES)[-maxper:] pclose = [math.log(float(row[PQS['CLOSE']])) for row in datadb] pvwap = [math.log(float(row[PQS['VWAP']])) for row in datadb] dsize = len(pclose) if (dsize >= rwindow + mwindow + 40): for pair in pairlist: reffdb = p4fns.read_csv(NSEEQSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PQS['VWAP']])) for row in reffdb] regr = p4fns.rolling_regress(pvwap[-dsize:], pvwapR[-dsize:], rwindow) rlen = len(regr) error = [ round((a / b - 1) * 100, 2) for a, b in zip(pclose[-rlen:], regr[-rlen:]) ] mu = p4fns.rolling_smean(error, mwindow) sg = p4fns.rolling_sstdd(error, mwindow) mlen = len(sg) error = error[-mlen:] normdist = int( p4fns.cumnormdist((error[-1] - mu[-1]) / sg[-1]) * 100) et_t1 = sum([ math.pow((error[i] - error[i - 1]), 2) for i in range(1, mlen) ]) et_sq = sum([math.pow(error[i], 2) for i in range(0, mlen)]) dwstat = round(et_t1 / et_sq, 2) table.append([pair, normdist, dwstat]) p4fns.write_csv(NSEPAIRDIR + symbol + CSV, [title] + table, 'w') p4fns.write_json(JSONPAIRDIR + symbol + JSON, [title] + table, [])
def qnttech(symbol, name): techtable = [] eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Price Bands ## ============================================== ## price = [float(row[PQS['CLOSE']]) for row in eqsdb] vwap = [float(row[PQS['VWAP']]) for row in eqsdb] pb1m = int((price[-1] - min(price[-21:])) / (max(price[-21:]) - min(price[-21:])) * 100) if len(price) > 21 else '-' pb3m = int((price[-1] - min(price[-63:])) / (max(price[-63:]) - min(price[-63:])) * 100) if len(price) > 63 else '-' pb6m = int((price[-1] - min(price[-126:])) / (max(price[-126:]) - min(price[-126:])) * 100) if len(price) > 126 else '-' pb1y = int((price[-1] - min(price[-252:])) / (max(price[-252:]) - min(price[-252:])) * 100) if len(price) > 252 else '-' ## Bollinger Bands ## ============================================== ## dsize = len(price) period = [21, 63, 126, 252] bb = ['-'] * 4 for i in range(0, 4): if (dsize > period[i] + 1): mu = p4fns.rolling_emean(vwap[-(period[i] + 1):], period[i])[-1] sg = p4fns.rolling_sstdd(vwap[-(period[i] + 1):], period[i])[-1] bb[i] = int(p4fns.cumnormdist((price[-1] - mu) / sg) * 100) techtable.append( [symbol, name, pb1m, pb3m, pb6m, pb1y, bb[0], bb[1], bb[2], bb[3]]) p4fns.write_csv(NSETECHDIR + 'NSETech' + CSV, techtable, 'a')
datadb = p4fns.read_csv(NSEIXSDBDIR + symbol1 + CSV)[-days:] price1 = [math.log(float(row[PXS['CLOSE']])) for row in datadb] vwap1 = price1 instrm1 = 'IX' if symbol2 in cnxlist: datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol2 + CSV), PQS, 'SERIES', REGEQSERIES)[-days:] price2 = [math.log(float(row[PQS['CLOSE']])) for row in datadb] instrm2 = 'EQ' else: datadb = p4fns.read_csv(NSEIXSDBDIR + symbol2 + CSV)[-days:] price2 = [math.log(float(row[PXS['CLOSE']])) for row in datadb] instrm2 = 'IX' dsize = min(len(price1), len(price2)) mu = p4fns.rolling_smean(vwap1[-dsize:], mwindow) sg = p4fns.rolling_sstdd(vwap1[-dsize:], mwindow) mlen = len(sg) timeser = [row[PQS['TIMESTAMP']] for row in datadb][-mlen:][:dur] price1 = price1[-mlen:][:dur] price2 = price2[-mlen:][:dur] mu = mu[-mlen:][:dur] sg = sg[-mlen:][:dur] tlen = len(timeser) startdate = timeser[0] enddate = timeser[-1] capital = 1000000 #startprice1 = float(p4fns.findvalue(startdate, instrm1, symbol1, 'XX', 'XX', 'XX', 'CLOSE')) #startprice2 = float(p4fns.findvalue(startdate, instrm2, symbol2, 'XX', 'XX', 'XX', 'CLOSE')) startprice1 = price1[0] startprice2 = price1[0]
mwindow = 94 close = [float(row[PQS['CLOSE']]) for row in eqsdb] pvwap = [math.log(float(row[PQS['VWAP']])) for row in eqsdb] if (eqsize >= rwindow + mwindow + 40): title = ['TIMESTAMP', 'CLOSE', 'MEAN', 'SIGMA'] reffdb = p4fns.read_csv(NSEIXSDBDIR + 'NIFTY' + CSV)[-eqsize:] pvwapR = [math.log(float(row[PXS['CLOSE']])) for row in reffdb] regr = p4fns.rolling_regress(pvwap[-eqsize:], pvwapR[-eqsize:], rwindow) predict = [round(math.exp(x), 2) for x in regr] mu = p4fns.rolling_smean(predict, mwindow) rlen = len(predict) error = [ round((a - b), 2) for a, b in zip(close[-rlen:], predict[-rlen:]) ] sg = p4fns.rolling_sstdd(error, mwindow) mu = mu[-dsize:] sg = sg[-dsize:] eqdata = eqsdb[-dsize:] table = [] for i in range(0, dsize): srow = [] srow.append(eqdata[i][PQS['TIMESTAMP']]) srow.append(eqdata[i][PQS['CLOSE']]) srow.append(mu[i]) srow.append(sg[i]) table.append(srow) p4fns.write_csv(NSEDIR + 'TECHNICAL/CRR/' + symbol + '_NIFTY' + CSV, [title] + table, 'w')
def qntgenl(symbol, name, sector, industry, mktcap, mcpercent): techtitle = ['SYMBOL','PRICE','GAIN','NAME','SECTOR','INDUSTRY','MKT_CAP','MC_PERCENT',\ 'VOLATILITY','MAX_VTY','MIN_VTY','VOLUME','MAX_VOL','MIN_VOL'] techtable = [] srow = [] srow.append(symbol) eqsdb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES) ## Current Values ## ============================================== ## curprice = eqsdb[-1][PQS['CLOSE']] srow.append(curprice) change = round(float(eqsdb[-1][PQS['GAIN']]), 2) srow.append(change) srow.append(name) srow.append(sector) srow.append(industry) srow.append(mktcap) srow.append(mcpercent) ## Volatility ## ============================================== ## if path.isfile(NSEDVSDBDIR + symbol + CSV): dvsdb = p4fns.filterdf(p4fns.filterdf(p4fns.filterdf(p4fns.read_csv(NSEDVSDBDIR+symbol+CSV),\ PDS, 'INSTRUMENT', ['OPTSTK']),\ PDS, 'TIMESTAMP', [today]),\ PDS, 'T2E', [str(x) for x in range(1,50)]) ivlist = [float(row[PDS['IV']]) for row in dvsdb] wtlist = [float(row[PDS['VAL_INLAKH']]) for row in dvsdb] if sum(wtlist) >= 100: avgiv = round(p4fns.wmean(ivlist, wtlist), 2) else: avgiv = 0 else: avgiv = 0 eqdata = eqsdb[-756:] gain = [float(row[PQS['GAIN']]) for row in eqdata] cum_gain = p4fns.rolling_sum(gain, 21) rol_stdd = p4fns.rolling_sstdd(cum_gain, 21) if (avgiv == 0): stdd1m = round(p4fns.sstdd(cum_gain) * math.sqrt(12), 2) volatility = stdd1m else: volatility = avgiv max_stdd = max([volatility, round(max(rol_stdd) * math.sqrt(12), 2)]) min_stdd = min([volatility, round(min(rol_stdd) * math.sqrt(12), 2)]) srow.append(volatility) srow.append(max_stdd) srow.append(min_stdd) ## Volume ## ============================================== ## eqdata = eqsdb[-252:] turnover = [ round(float(row[PQS['TURNOVER']]) / 10000000, 2) for row in eqdata ] volume = p4fns.rolling_emean(turnover, 3) max_vol = max(volume) min_vol = min(volume) srow.append(turnover[-1]) srow.append(max_vol) srow.append(min_vol) ## Create JSON File ## ============================================== ## techtable.append(srow) p4fns.write_csv(NSEGENLDIR + symbol + CSV, [techtitle] + techtable, 'w') p4fns.write_json(JSONGENLDIR + symbol + JSON, [techtitle] + techtable, TECHCOLTYP) genltable = [] grow = [] grow.append(symbol) grow.append(name) grow.append(sector) grow.append(industry) grow.append(curprice) grow.append(change) grow.append(mktcap) grow.append(turnover[-1]) grow.append(volatility) genltable.append(grow) p4fns.write_csv(NSETECHDIR + 'NSEGenl' + CSV, genltable, 'a')
def pltcrosregres(symbol, period, deltaP, deltaN, rwindow, mwindow): maxper = period + rwindow + mwindow - 1 datadb = p4fns.filterdf(p4fns.read_csv(NSEEQSDBDIR + symbol + CSV), PQS, 'SERIES', REGEQSERIES)[-maxper:] ptimestamp = [ date2num(datetime.strptime(row[PQS['TIMESTAMP']], '%Y-%m-%d')) for row in datadb ] pclose = [math.log(float(row[PQS['CLOSE']])) for row in datadb] pvwap = [math.log(float(row[PQS['VWAP']])) for row in datadb] dsize = len(ptimestamp) if (dsize >= rwindow + mwindow + 40): # pairlist = [row[0] for row in p4fns.read_csv(NSEPAIRDIR+symbol+CSV)]+['NIFTY'] pairlist = ['NIFTY'] for pair in pairlist: if pair in ixlist: reffdb = p4fns.read_csv(NSEIXSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PXS['CLOSE']])) for row in reffdb] else: reffdb = p4fns.read_csv(NSEEQSDBDIR + pair + CSV)[-maxper:] pvwapR = [math.log(float(row[PQS['VWAP']])) for row in reffdb] regr = p4fns.rolling_regress(pvwap[-dsize:], pvwapR[-dsize:], rwindow) rlen = len(regr) error = [ round((a / b - 1) * 100, 2) for a, b in zip(pclose[-rlen:], regr[-rlen:]) ] stimestamp = ptimestamp[-rlen:] mu = p4fns.rolling_smean(error, mwindow) sg = p4fns.rolling_sstdd(error, mwindow) mlen = len(sg) error = error[-mlen:] stimestamp = stimestamp[-mlen:] mu = mu[-mlen:] sg = sg[-mlen:] upl = [mu[i] + sg[i] * deltaP for i in range(mlen)] lwl = [mu[i] - sg[i] * deltaN for i in range(mlen)] majorl = MonthLocator() xformat = DateFormatter('%b') fig = plt.figure(figsize=(6, 3)) gs = gridspec.GridSpec(1, 1) ax1 = plt.subplot(gs[0]) plt.title(symbol, loc='left', color=textc, weight='bold') plt.title('StatArb [' + symbol + ' vs ' + pair + ']', loc='left', color=textc, weight='bold', size='small') ax1.xaxis.set_major_locator(majorl) ax1.xaxis.set_major_formatter(xformat) ax1.yaxis.tick_right() ax1.grid(b=True, which='major', color=gridc, linestyle=':') ax1.patch.set_facecolor(backc) ax1.spines['bottom'].set_color(labelc) ax1.spines['top'].set_color(backc) ax1.spines['right'].set_color(labelc) ax1.spines['left'].set_color(backc) ax1.tick_params(axis='x', colors=labelc) ax1.tick_params(axis='y', colors=labelc) for label in (ax1.get_xticklabels() + ax1.get_yticklabels()): label.set_fontsize(6) ax1.plot(stimestamp, error, color='deepskyblue', linewidth=1.5) ax1.xaxis_date() ax1.autoscale_view() ax1.set_aspect('auto') plt.setp(ax1.get_xticklabels(), horizontalalignment='center', fontsize=8) ax2 = plt.subplot(gs[0]) ax2.plot(stimestamp, mu, color='royalblue', linewidth=1.5) ax3 = plt.subplot(gs[0]) ax3.plot(stimestamp, upl, color='yellowgreen') ax4 = plt.subplot(gs[0]) ax4.plot(stimestamp, lwl, color='orangered') plt.figtext(0.94, 0.94, '$\copyright$ piby4.com ' + today, color=sitec, size='xx-small', ha='right') gs.tight_layout(fig) # plt.savefig(IMGCRRDIR+symbol+'_'+pair+'.png', facecolor=(backc)) plt.savefig('aaa.png', facecolor=(backc)) plt.close(fig)
price2 = [math.log(float(row[PQS['CLOSE']])) for row in datadb] vwap2 = [math.log(float(row[PQS['VWAP']])) for row in datadb] else: datadb = p4fns.read_csv(NSEIXSDBDIR + symbol2 + CSV)[-days:] close2 = [float(row[PXS['CLOSE']]) for row in datadb] price2 = [math.log(float(row[PXS['CLOSE']])) for row in datadb] vwap2 = price2 dsize = min(len(price1), len(price2)) regrP = p4fns.rolling_regress(vwap1[-dsize:], vwap2[-dsize:], rwindow) rlen = len(regrP) errorP = [ round((a / b - 1) * 100, 2) for a, b in zip(price1[-rlen:], regrP[-rlen:]) ] timeser = [row[PQS['TIMESTAMP']] for row in datadb][-rlen:] muP = p4fns.rolling_smean(errorP, mwindow) sgP = p4fns.rolling_sstdd(errorP, mwindow) mlen = len(sgP) errorP = errorP[-mlen:][:dur] timeser = timeser[-mlen:][:dur] muP = muP[-mlen:][:dur] sgP = sgP[-mlen:][:dur] tlen = len(timeser) close1 = close1[-mlen:][:dur] close2 = close2[-mlen:][:dur] if symbol1 in cnxlist: instrm1 = 'EQ' else: instrm1 = 'IX' if symbol2 in cnxlist: