def clique_with_peel(seed_i, cursor): THRESHOLD = CLIQUE_MIN_SIZE * QUASI_GAMMA - 1 G = seed_graph(seed_i, cursor) # first time we're lenient G.delete_nodes_from( filter(lambda n: G.degree(n)<=THRESHOLD, G.nodes_iter()) ) print >> sys.stderr, "initial seed graph gets {0} nodes, {1} edges".format(G.number_of_nodes(),G.number_of_edges()) G_nodes = G.nodes() S,H = p.convert_graph_connectivity_to_sparse(G, G_nodes) tQ = p.grasp(S, H, QUASI_GAMMA, QUASI_MAXITR, G_nodes.index(seed_i)) Q = map(lambda x: G_nodes[x], tQ) print >> sys.stderr, "before peel clique size {0}, graph {1} nodes, {2} edges".format(len(Q),\ G.number_of_nodes(), G.number_of_edges()) if seed_i not in Q: print >> sys.stderr, "seed node got kicked out PART 1. NOOOOO!!!" return ([],[]) #cHANGE BACK LATER peel(G, seed_i, Q, QUASI_GAMMA, cursor) print >> sys.stderr, "after peel seed graph gets {0} nodes, {1} edges".format(G.number_of_nodes(),G.number_of_edges()) # return Q, G # TODO: delete later G_nodes = G.nodes() S,H = p.convert_graph_connectivity_to_sparse(G, G_nodes) print >> sys.stderr, "index of seed i", G_nodes.index(seed_i) tQ = p.grasp(S, H, QUASI_GAMMA, QUASI_MAXITR, G_nodes.index(seed_i)) # TESTING (TODO: DELETE LATER) for quasi=0.8 followed by quasi=0.6 print >> sys.stderr, "after peel clique size {0}".format(len(tQ)) Q0 = map(lambda x: G_nodes[x], tQ) p.local_extra(H, tQ, 0.6) print >> sys.stderr, "after local quasi=0.6 clique size {0}".format(len(tQ)) Q = map(lambda x: G_nodes[x], tQ) if seed_i not in Q: print >> sys.stderr, "seed node got kicked out PART 2. NOOOOO!!!" return ([],[]) # sanity check, delete later (TODO) if len(Q) <= CLIQUE_MIN_SIZE: return (Q0,Q) # this line is just for avoiding error at the sanity check, delete later threshold = 0.6 * len(Q) # CHANGE THIS BACK LATER #threshold = QUASI_GAMMA * len(Q) for q in Q: assert sum( map(lambda x: G.has_edge(q,x), Q) ) >= threshold return (Q0, Q) # CHANGE BACK TO return Q later
def init_cluster_by_clique(fasta_filename, qver_get_func, bestn=100, ece_penalty=1, ece_min_len=20, nproc=8, maxScore=-1000): """ fasta_filename --- initial fasta filename, probably called aloha.fa_split00.fa qver_get_func --- function that returns QVs on reads bestn --- parameter in BLASR, higher helps in finding perfect cliques but bigger output nproc, maxScore --- parameter in BLASR, set maxScore appropriate to input transcript length ece_penalty, ece_min_len --- parameter in isoform hit calling Self-blasr input then iteratively find all mutually exclusive cliques (in decreasing size) Returns dict of cluster_index --> list of seqids which is the 'uc' dict that can be used by ICE """ out_filename = fasta_filename + '.self.blasr' if os.path.exists(out_filename): print >> sys.stderr, "{0} already exists. No need to run BLASR.".format(out_filename) else: cmd = "blasr {i} {i} -m 5 -maxLCPLength 15 -nproc {cpu} -maxScore {score} -bestn {n} -nCandidates {n} -out {o}".format(\ i=fasta_filename, n=bestn, o=out_filename, cpu=nproc, score=maxScore) print >> sys.stderr, cmd subprocess.check_call(cmd, shell=True) G = nx.Graph() for r in iCEC.blasr_against_ref(out_filename, is_FL=True, sID_starts_with_c=False, qver_get_func=qver_get_func, ece_penalty=ece_penalty, ece_min_len=ece_min_len): if r[0] == r[1]: continue # self hit, ignore if r[-1] is not None: print >> sys.stderr, "adding edge {0},{1}".format(r[0], r[1]) G.add_edge(r[0], r[1]) uc = {} used = [] ind = 0 deg = G.degree().items() deg.sort(key=lambda x:x[1], reverse=True) for d in deg: if d[0] not in G: continue # just get the immediate neighbors since we're looking for perfect cliques G_prime = G.subgraph([d[0]] + G.neighbors(d[0])) G_prime_nodes = G_prime.nodes() S,H = pClique.convert_graph_connectivity_to_sparse(G_prime, G_prime_nodes) seed_i = G_prime_nodes.index(d[0]) tQ = pClique.grasp(S, H, 1., 5, seed_i) if len(tQ) > 0: c = [G_prime_nodes[i] for i in tQ] uc[ind] = c ind += 1 used += c G.remove_nodes_from(c) # ------ below, old way of using find_cliques, inefficient on large graphs # cliques = list(nx.find_cliques(G)) # cliques.sort(key=lambda x: len(x), reverse=True) # for c in cliques: # if all(map(lambda x: x in G, c)): # uc[ind] = c # ind += 1 # used += c # G.remove_nodes_from(c) for r in SeqIO.parse(open(fasta_filename), 'fasta'): if r.id not in used: uc[ind] = [r.id] ind += 1 return uc
def new_cluster_pipe(rfam_fam, shuffle_ratio): assert type(shuffle_ratio) is int output_prefix = "Rfam_{fam}_shuffle{X}X".format(fam=rfam_fam, X=shuffle_ratio) fasta_filename = output_prefix+'.fna' blast_output = "{input}.M8N7Q16R2W3E2.WUblast".format(input=fasta_filename) report_f = open(output_prefix+'.report', 'w') if not os.path.exists(blast_output): dummy_id = 0 nodes_to_index = {} with open(fasta_filename, 'w') as f: with get_conn_ncRNA() as cursor: cursor.execute("select id,seq from Rfam_fasta where rfam_fam='{fam}' order by id".format(fam=rfam_fam)) for _id,seq in cursor.fetchall(): id = "TP{0}_{1}".format(dummy_id, _id) f.write(">{id}\n{seq}\n".format(id=id, seq=seq)) nodes_to_index[id] = dummy_id dummy_id += 1 ushuffle.shuffle(seq, len(seq), 2) for x in xrange(shuffle_ratio): id = "FP{0}_{1}".format(dummy_id, _id) f.write(">{id}\n{seq}\n".format(id=id, seq=ushuffle.shuffle2())) nodes_to_index[id] = dummy_id dummy_id += 1 start_t = time.time() # now blast it os.system("xdformat -n -o {input} {input}".format(input=fasta_filename)) os.system("blastn -d {input} -i {input} -M 8 -N -7 -Q 16 -R 2 -E 2 \ -W 3 -mformat 2 -cpus 4 -o {output}".format(input=fasta_filename, output=blast_output)) report_f.write("(1) BLAST TIME: {0} sec\n".format(time.time()-start_t)) # now parse the blast nodes_to_index = c1.NodesToIndex(nodes_to_index, -1) G = Graph() c1.step1_process_blast(blast_output=blast_output,\ score_cutoff=35, nodes_to_index=nodes_to_index, G=G, program='WU') print >> sys.stderr, "Homology graph has {0} nodes, {1} edges....".format(\ G.number_of_nodes(), G.number_of_edges()) c1.export_to_db(G, nodes_to_index, 0, blast_output) # convert nodes_to_index into dict nodes_ind --> acc id nodes_to_index = dict( map(lambda (x,y):(y,x), nodes_to_index.d.items()) ) with open(blast_output+'.nodes_to_index', 'w') as handle: for ind,id in nodes_to_index.iteritems(): handle.write("{0}\t{1}\n".format(ind,id)) # read back the .parsed and .sets_for_nodes files G = Graph() sets_for_nodes = {} nodes_to_index = {} with open(blast_output+'.parsed') as handle: for line in handle: raw = map(int, line.strip().split('\t')) G.add_edge(raw[0],raw[1]) with open(blast_output+'.sets_for_nodes') as handle: for line in handle: raw = map(int, line.strip().split('\t')) sets_for_nodes[raw[0]] = {'nodes_ind':raw[1],'start':raw[2],'end':raw[3]} with open(blast_output+'.nodes_to_index') as handle: for line in handle: raw = line.strip().split() nodes_to_index[int(raw[0])] = raw[1] tmp = len(filter(lambda x: nodes_to_index[sets_for_nodes[x]['nodes_ind']].startswith('FP'), G.nodes_iter())) report_f.write("(2) AFTER parsing BLAST, graph has {0} negative control nodes, {1} TP nodes\n".format(tmp, G.number_of_nodes()-tmp)) # remove low deg (< 3) nodes x = filter(lambda n: G.degree(n)<NEW_MIN_CLIQUE_SIZE, G.nodes_iter()) while len(x) > 0: G.delete_nodes_from(x) x = filter(lambda n: G.degree(n)<NEW_MIN_CLIQUE_SIZE, G.nodes_iter()) tmp = len(filter(lambda x: nodes_to_index[sets_for_nodes[x]['nodes_ind']].startswith('FP'), G.nodes_iter())) report_f.write("(3) AFTER recursively removing nodes of degree < 3, graph has {0} negative control nodes, {1} TP nodes\n".format(tmp, G.number_of_nodes()-tmp)) report_f.write("----------------------------------------------------------------------------\n") report_f.write("OUT\tDIR\tCLIQUE_SIZE\tSCANNED_TP\tSCANNED_FP\tCM_time\n") report_f.write("----------------------------------------------------------------------------\n") # for now just brute force....go through node by node as seeds dummy_round = 0 while G.number_of_nodes()>=NEW_MIN_CLIQUE_SIZE and G.number_of_edges()>=NEW_MIN_CLIQUE_SIZE: # find perfect max cliques with a random starting node G_nodes = G.nodes() S,H = p.convert_graph_connectivity_to_sparse(G, G_nodes) tQ = p.grasp(S, H, gamma=1.0, maxitr=20, given_starting_node=None) Q = map(lambda x: G_nodes[x], tQ) if len(Q) < NEW_MIN_CLIQUE_SIZE: # delete these nodes G.delete_nodes_from(Q) continue # PERFECT CLIQUE SANITY TESTING, DELETE LATER for x in Q: for y in Q: if x!=y: print >> sys.stderr, "testing....", x,y try: assert G.has_edge(x,y) except: return Q,G Q.sort() print >> sys.stderr, "clique is...", Q prefix = output_prefix + str(dummy_round) + '_size' + str(len(Q)) + '_' dummy_round += 1 start_t = time.time() scan_dir,scan_result = run_cmfinder(Q, nodes_to_index, sets_for_nodes, prefix, os.path.abspath(fasta_filename)) cm_time = time.time()-start_t if scan_result is not None: outf = open(os.path.basename(scan_dir)+'.gv','w') outf.write("""graph test{ edge [ dir=none ]; node [ style=filled, fontsize=2.0, height=0.1, width=0.1, fixedsize=true ]; """) # draw this graph scanned = {'TP':0, 'FP':0} for n in G.nodes_iter(): id = nodes_to_index[sets_for_nodes[n]['nodes_ind']] # id is something like TP1_NC_XXXX.... or FP10_NC_XXXX.... _id = id[:id.find('_')] shape = 'circle' if id.startswith('TP') else 'box' if n in Q: outf.write("{0} [color=dodgerblue1, shape={1}];\n".format(n, shape)) elif id in scan_result: outf.write("{0} [color=darkorange, shape={1}];\n".format(n, shape)) scanned[_id[:2]] += 1 else: outf.write("{0} [color=grey, shape={1}];\n".format(n, shape)) for (n1,n2) in G.edges_iter(data=False): id1 = nodes_to_index[sets_for_nodes[n1]['nodes_ind']] id1 = id1[:id1.find('_')] id2 = nodes_to_index[sets_for_nodes[n2]['nodes_ind']] id2 = id2[:id2.find('_')] outf.write("{0} -- {1};\n".format(n1,n2)) outf.write("}") outf.close() report_f.write("{0}\t{1}\t{2}\t{3}\t{4}\t{5}\n".format(outf.name,scan_dir,len(Q),scanned['TP'],scanned['FP'],cm_time)) report_f.flush() # delete the edges from the graph G.delete_edges_from(itertools.combinations(Q, 2)) # again, remove low-degree nodes x = filter(lambda n: G.degree(n)<NEW_MIN_CLIQUE_SIZE, G.nodes_iter()) while len(x) > 0: G.delete_nodes_from(x) x = filter(lambda n: G.degree(n)<NEW_MIN_CLIQUE_SIZE, G.nodes_iter()) report_f.close()