def test_get_vertex_from_subvertex(self):
        """
        test that the graph mapper can retribve a vertex froma  given subvertex
        :return:
        """
        subvertices = list()
        subvertices.append(PartitionedVertex(None, ""))
        subvertices.append(PartitionedVertex(None, ""))

        subvert1 = PartitionedVertex(None, "")
        subvert2 = PartitionedVertex(None, "")

        graph_mapper = GraphMapper()
        vert = TestVertex(10, "Some testing vertex")

        vertex_slice = Slice(0, 1)
        graph_mapper.add_subvertex(subvert1, vertex_slice, vert)
        vertex_slice = Slice(2, 3)
        graph_mapper.add_subvertex(subvert2, vertex_slice, vert)

        self.assertEqual(
            vert, graph_mapper.get_vertex_from_subvertex(subvert1))
        self.assertEqual(
            vert, graph_mapper.get_vertex_from_subvertex(subvert2))
        self.assertEqual(
            None, graph_mapper.get_vertex_from_subvertex(subvertices[0]))
        self.assertEqual(
            None, graph_mapper.get_vertex_from_subvertex(subvertices[1]))
예제 #2
0
    def run(self, subgraph, graph_mapper):
        new_sub_graph = PartitionedGraph(label=subgraph.label)
        new_graph_mapper = GraphMapper(graph_mapper.first_graph_label,
                                       subgraph.label)

        # create progress bar
        progress_bar = ProgressBar(
            len(subgraph.subvertices) + len(subgraph.subedges),
            "Filtering edges")

        # add the subverts directly, as they wont be pruned.
        for subvert in subgraph.subvertices:
            new_sub_graph.add_subvertex(subvert)
            associated_vertex = graph_mapper.get_vertex_from_subvertex(subvert)
            vertex_slice = graph_mapper.get_subvertex_slice(subvert)
            new_graph_mapper.add_subvertex(
                subvertex=subvert, vertex_slice=vertex_slice,
                vertex=associated_vertex)
            progress_bar.update()

        # start checking subedges to decide which ones need pruning....
        for subedge in subgraph.subedges:
            if not self._is_filterable(subedge, graph_mapper):
                logger.debug("this subedge was not pruned {}".format(subedge))
                new_sub_graph.add_subedge(subedge)
                associated_edge = graph_mapper.\
                    get_partitionable_edge_from_partitioned_edge(subedge)
                new_graph_mapper.add_partitioned_edge(subedge, associated_edge)
            else:
                logger.debug("this subedge was pruned {}".format(subedge))
            progress_bar.update()
        progress_bar.end()

        # returned the pruned partitioned_graph and graph_mapper
        return new_sub_graph, new_graph_mapper
    def test_get_subvertices_from_vertex(self):
        """
        test getting the subvertex from a graph mappert via the vertex
        :return:
        """
        subvertices = list()
        subvertices.append(PartitionedVertex(None, ""))
        subvertices.append(PartitionedVertex(None, ""))
        subvert1 = PartitionedVertex(None, "")
        subvert2 = PartitionedVertex(None, "")

        subedges = list()
        subedges.append(MultiCastPartitionedEdge(subvertices[0],
                                                 subvertices[1]))
        subedges.append(MultiCastPartitionedEdge(subvertices[1],
                                                 subvertices[1]))

        graph_mapper = GraphMapper()
        vert = TestVertex(4, "Some testing vertex")

        vertex_slice = Slice(0, 1)
        graph_mapper.add_subvertex(subvert1, vertex_slice, vert)
        vertex_slice = Slice(2, 3)
        graph_mapper.add_subvertex(subvert2, vertex_slice, vert)

        returned_subverts = graph_mapper.get_subvertices_from_vertex(vert)

        self.assertIn(subvert1, returned_subverts)
        self.assertIn(subvert2, returned_subverts)
        for sub in subvertices:
            self.assertNotIn(sub, returned_subverts)
예제 #4
0
    def __call__(self, subgraph, graph_mapper):
        """
        :param subgraph: the subgraph whose edges are to be filtered
        :param graph_mapper: the graph mapper between partitionable and \
                partitioned graphs.
        :return: a new graph mapper and partitioned graph
        """
        new_sub_graph = PartitionedGraph(label=subgraph.label)
        new_graph_mapper = GraphMapper(graph_mapper.first_graph_label,
                                       subgraph.label)

        # create progress bar
        progress_bar = ProgressBar(
            len(subgraph.subvertices) + len(subgraph.subedges),
            "Filtering edges")

        # add the subverts directly, as they wont be pruned.
        for subvert in subgraph.subvertices:
            new_sub_graph.add_subvertex(subvert)
            associated_vertex = graph_mapper.get_vertex_from_subvertex(subvert)
            vertex_slice = graph_mapper.get_subvertex_slice(subvert)
            new_graph_mapper.add_subvertex(subvertex=subvert,
                                           vertex_slice=vertex_slice,
                                           vertex=associated_vertex)
            progress_bar.update()

        # start checking subedges to decide which ones need pruning....
        for subvert in subgraph.subvertices:
            out_going_partitions = \
                subgraph.outgoing_edges_partitions_from_vertex(subvert)
            for partitioner_identifier in out_going_partitions:
                for subedge in \
                        out_going_partitions[partitioner_identifier].edges:
                    if not self._is_filterable(subedge, graph_mapper):
                        logger.debug(
                            "this subedge was not pruned {}".format(subedge))
                        new_sub_graph.add_subedge(subedge,
                                                  partitioner_identifier)
                        associated_edge = graph_mapper.\
                            get_partitionable_edge_from_partitioned_edge(
                                subedge)
                        new_graph_mapper.add_partitioned_edge(
                            subedge, associated_edge)
                    else:
                        logger.debug(
                            "this subedge was pruned {}".format(subedge))
                    progress_bar.update()
        progress_bar.end()

        # returned the pruned partitioned_graph and graph_mapper
        return {
            'new_sub_graph': new_sub_graph,
            'new_graph_mapper': new_graph_mapper
        }
예제 #5
0
    def __call__(self, subgraph, graph_mapper):
        """
        :param subgraph: the subgraph whose edges are to be filtered
        :param graph_mapper: the graph mapper between partitionable and \
                partitioned graphs.
        :return: a new graph mapper and partitioned graph
        """
        new_sub_graph = PartitionedGraph(label=subgraph.label)
        new_graph_mapper = GraphMapper(graph_mapper.first_graph_label,
                                       subgraph.label)

        # create progress bar
        progress_bar = ProgressBar(
            len(subgraph.subvertices) + len(subgraph.subedges),
            "Filtering edges")

        # add the subverts directly, as they wont be pruned.
        for subvert in subgraph.subvertices:
            new_sub_graph.add_subvertex(subvert)
            associated_vertex = graph_mapper.get_vertex_from_subvertex(subvert)
            vertex_slice = graph_mapper.get_subvertex_slice(subvert)
            new_graph_mapper.add_subvertex(
                subvertex=subvert, vertex_slice=vertex_slice,
                vertex=associated_vertex)
            progress_bar.update()

        # start checking subedges to decide which ones need pruning....
        for subvert in subgraph.subvertices:
            out_going_partitions = \
                subgraph.outgoing_edges_partitions_from_vertex(subvert)
            for partitioner_identifier in out_going_partitions:
                for subedge in \
                        out_going_partitions[partitioner_identifier].edges:
                    if not self._is_filterable(subedge, graph_mapper):
                        logger.debug("this subedge was not pruned {}"
                                     .format(subedge))
                        new_sub_graph.add_subedge(subedge,
                                                  partitioner_identifier)
                        associated_edge = graph_mapper.\
                            get_partitionable_edge_from_partitioned_edge(
                                subedge)
                        new_graph_mapper.add_partitioned_edge(
                            subedge, associated_edge)
                    else:
                        logger.debug("this subedge was pruned {}"
                                     .format(subedge))
                    progress_bar.update()
        progress_bar.end()

        # returned the pruned partitioned_graph and graph_mapper
        return {'new_sub_graph': new_sub_graph,
                'new_graph_mapper': new_graph_mapper}
예제 #6
0
    def run(self, subgraph, graph_mapper):
        new_sub_graph = PartitionedGraph(label=subgraph.label)
        new_graph_mapper = GraphMapper(graph_mapper.first_graph_label,
                                       subgraph.label)

        # create progress bar
        progress_bar = \
            ProgressBar(len(subgraph.subvertices) + len(subgraph.subedges),
                        "on checking which subedges are filterable given "
                        "heuristics")

        # add the subverts directly, as they wont be pruned.
        for subvert in subgraph.subvertices:
            new_sub_graph.add_subvertex(subvert)
            associated_vertex = graph_mapper.get_vertex_from_subvertex(subvert)
            vertex_slice = graph_mapper.get_subvertex_slice(subvert)
            new_graph_mapper.add_subvertex(subvertex=subvert,
                                           vertex_slice=vertex_slice,
                                           vertex=associated_vertex)
            progress_bar.update()

        # start checking subedges to decide which ones need pruning....
        for subedge in subgraph.subedges:
            if not self._is_filterable(subedge, graph_mapper):
                logger.debug("this subedge was not pruned {}".format(subedge))
                new_sub_graph.add_subedge(subedge)
                associated_edge = graph_mapper.\
                    get_partitionable_edge_from_partitioned_edge(subedge)
                new_graph_mapper.add_partitioned_edge(subedge, associated_edge)
            else:
                logger.debug("this subedge was pruned {}".format(subedge))
            progress_bar.update()
        progress_bar.end()

        # returned the pruned partitioned_graph and graph_mapper
        return new_sub_graph, new_graph_mapper
예제 #7
0
    def __call__(self, graph, machine):

        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=graph.vertices,
            supported_constraints=[PartitionerMaximumSizeConstraint],
            abstract_constraint_type=AbstractPartitionerConstraint)

        # start progress bar
        progress_bar = ProgressBar(len(graph.vertices),
                                   "Partitioning graph vertices")
        vertices = graph.vertices
        subgraph = PartitionedGraph(label="partitioned_graph for partitionable"
                                          "_graph {}".format(graph.label))
        graph_to_subgraph_mapper = GraphMapper(graph.label, subgraph.label)
        resource_tracker = ResourceTracker(machine)

        # Partition one vertex at a time
        for vertex in vertices:

            # Get the usage of the first atom, then assume that this
            # will be the usage of all the atoms
            requirements = vertex.get_resources_used_by_atoms(Slice(0, 1),
                                                              graph)

            # Locate the maximum resources available
            max_resources_available = \
                resource_tracker.get_maximum_constrained_resources_available(
                    vertex.constraints)

            # Find the ratio of each of the resources - if 0 is required,
            # assume the ratio is the max available
            atoms_per_sdram = self._get_ratio(
                max_resources_available.sdram.get_value(),
                requirements.sdram.get_value())
            atoms_per_dtcm = self._get_ratio(
                max_resources_available.dtcm.get_value(),
                requirements.dtcm.get_value())
            atoms_per_cpu = self._get_ratio(
                max_resources_available.cpu.get_value(),
                requirements.cpu.get_value())

            max_atom_values = [atoms_per_sdram, atoms_per_dtcm, atoms_per_cpu]

            max_atoms_constraints = utility_calls.locate_constraints_of_type(
                vertex.constraints, PartitionerMaximumSizeConstraint)
            for max_atom_constraint in max_atoms_constraints:
                max_atom_values.append(max_atom_constraint.size)

            atoms_per_core = min(max_atom_values)

            # Partition into subvertices
            counted = 0
            while counted < vertex.n_atoms:

                # Determine subvertex size
                remaining = vertex.n_atoms - counted
                if remaining > atoms_per_core:
                    alloc = atoms_per_core
                else:
                    alloc = remaining

                # Create and store new subvertex, and increment elements
                #  counted
                if counted < 0 or counted + alloc - 1 < 0:
                    raise PacmanPartitionException("Not enough resources"
                                                   " available to create"
                                                   " subvertex")

                vertex_slice = Slice(counted, counted + (alloc - 1))
                subvertex_usage = vertex.get_resources_used_by_atoms(
                    vertex_slice, graph)

                subvert = vertex.create_subvertex(
                    vertex_slice, subvertex_usage,
                    "{}:{}:{}".format(vertex.label, counted,
                                      (counted + (alloc - 1))),
                    partition_algorithm_utilities.
                    get_remaining_constraints(vertex))
                subgraph.add_subvertex(subvert)
                graph_to_subgraph_mapper.add_subvertex(
                    subvert, vertex_slice, vertex)
                counted = counted + alloc

                # update allocated resources
                resource_tracker.allocate_constrained_resources(
                    subvertex_usage, vertex.constraints)

            # update and end progress bars as needed
            progress_bar.update()
        progress_bar.end()

        partition_algorithm_utilities.generate_sub_edges(
            subgraph, graph_to_subgraph_mapper, graph)

        return {'Partitioned_graph': subgraph,
                'Graph_mapper': graph_to_subgraph_mapper}