예제 #1
0
    def train(self, validate=False):
        assert self.mode == 'train', "Model not in 'train' mode"

        # if no given weights loaded, load backbone pretrain weights as default
        if not self._weights_loaded:
            self.load_weights(self.cfg.pretrain_weights)

        model = self.model
        if self.cfg.fleet:
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(
                self.optimizer).user_defined_optimizer
        elif self._nranks > 1:
            model = paddle.DataParallel(self.model)

        # initial fp16
        if self.cfg.fp16:
            scaler = amp.GradScaler(enable=self.cfg.use_gpu,
                                    init_loss_scaling=1024)

        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(self.cfg.log_iter,
                                                        fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(self.cfg.log_iter,
                                                       fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
            self.status['mode'] = 'train'
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
            model.train()
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                self._compose_callback.on_step_begin(self.status)

                if self.cfg.fp16:
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()

                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

                if self._nranks < 2 or self._local_rank == 0:
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
                iter_tic = time.time()

            self._compose_callback.on_epoch_end(self.status)

            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and (epoch_id % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                with paddle.no_grad():
                    self._eval_with_loader(self._eval_loader)
예제 #2
0
    def train(self, validate=False):
        assert self.mode == 'train', "Model not in 'train' mode"
        Init_mark = False

        model = self.model
        if self.cfg.get('fleet', False):
            model = fleet.distributed_model(model)
            self.optimizer = fleet.distributed_optimizer(self.optimizer)
        elif self._nranks > 1:
            find_unused_parameters = self.cfg[
                'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
            model = paddle.DataParallel(
                self.model, find_unused_parameters=find_unused_parameters)

        # initial fp16
        if self.cfg.get('fp16', False):
            scaler = amp.GradScaler(enable=self.cfg.use_gpu,
                                    init_loss_scaling=1024)

        self.status.update({
            'epoch_id': self.start_epoch,
            'step_id': 0,
            'steps_per_epoch': len(self.loader)
        })

        self.status['batch_time'] = stats.SmoothedValue(self.cfg.log_iter,
                                                        fmt='{avg:.4f}')
        self.status['data_time'] = stats.SmoothedValue(self.cfg.log_iter,
                                                       fmt='{avg:.4f}')
        self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)

        if self.cfg.get('print_flops', False):
            self._flops(self.loader)
        profiler_options = self.cfg.get('profiler_options', None)

        self._compose_callback.on_train_begin(self.status)

        for epoch_id in range(self.start_epoch, self.cfg.epoch):
            self.status['mode'] = 'train'
            self.status['epoch_id'] = epoch_id
            self._compose_callback.on_epoch_begin(self.status)
            self.loader.dataset.set_epoch(epoch_id)
            model.train()
            iter_tic = time.time()
            for step_id, data in enumerate(self.loader):
                self.status['data_time'].update(time.time() - iter_tic)
                self.status['step_id'] = step_id
                profiler.add_profiler_step(profiler_options)
                self._compose_callback.on_step_begin(self.status)
                data['epoch_id'] = epoch_id

                if self.cfg.get('fp16', False):
                    with amp.auto_cast(enable=self.cfg.use_gpu):
                        # model forward
                        outputs = model(data)
                        loss = outputs['loss']

                    # model backward
                    scaled_loss = scaler.scale(loss)
                    scaled_loss.backward()
                    # in dygraph mode, optimizer.minimize is equal to optimizer.step
                    scaler.minimize(self.optimizer, scaled_loss)
                else:
                    # model forward
                    outputs = model(data)
                    loss = outputs['loss']
                    # model backward
                    loss.backward()
                    self.optimizer.step()
                curr_lr = self.optimizer.get_lr()
                self.lr.step()
                if self.cfg.get('unstructured_prune'):
                    self.pruner.step()
                self.optimizer.clear_grad()
                self.status['learning_rate'] = curr_lr

                if self._nranks < 2 or self._local_rank == 0:
                    self.status['training_staus'].update(outputs)

                self.status['batch_time'].update(time.time() - iter_tic)
                self._compose_callback.on_step_end(self.status)
                if self.use_ema:
                    self.ema.update(self.model)
                iter_tic = time.time()

            # apply ema weight on model
            if self.use_ema:
                weight = copy.deepcopy(self.model.state_dict())
                self.model.set_dict(self.ema.apply())
            if self.cfg.get('unstructured_prune'):
                self.pruner.update_params()

            self._compose_callback.on_epoch_end(self.status)

            if validate and (self._nranks < 2 or self._local_rank == 0) \
                    and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 \
                             or epoch_id == self.end_epoch - 1):
                if not hasattr(self, '_eval_loader'):
                    # build evaluation dataset and loader
                    self._eval_dataset = self.cfg.EvalDataset
                    self._eval_batch_sampler = \
                        paddle.io.BatchSampler(
                            self._eval_dataset,
                            batch_size=self.cfg.EvalReader['batch_size'])
                    self._eval_loader = create('EvalReader')(
                        self._eval_dataset,
                        self.cfg.worker_num,
                        batch_sampler=self._eval_batch_sampler)
                # if validation in training is enabled, metrics should be re-init
                # Init_mark makes sure this code will only execute once
                if validate and Init_mark == False:
                    Init_mark = True
                    self._init_metrics(validate=validate)
                    self._reset_metrics()
                with paddle.no_grad():
                    self.status['save_best_model'] = True
                    self._eval_with_loader(self._eval_loader)

            # restore origin weight on model
            if self.use_ema:
                self.model.set_dict(weight)

        self._compose_callback.on_train_end(self.status)
예제 #3
0
    use_fp16 = cfg.train_cfg.get('fp16', False)
    if use_fleet:
        # 初始化Fleet环境
        fleet.init(is_collective=True)
        # 通过Fleet API获取分布式model,用于支持分布式训练
        model = fleet.distributed_model(model)
        optimizer = fleet.distributed_optimizer(optimizer)
    elif _nranks > 1:
        find_unused_parameters = cfg.train_cfg['find_unused_parameters'] \
            if 'find_unused_parameters' in cfg.train_cfg else False
        model = paddle.DataParallel(
            model, find_unused_parameters=find_unused_parameters)
    if use_fp16:
        # scaler = amp.GradScaler(enable=use_gpu, init_loss_scaling=2.**16,
        #                         incr_every_n_steps=2000, use_dynamic_loss_scaling=True)
        scaler = amp.GradScaler(enable=use_gpu, init_loss_scaling=1024)

    print('\n=============== fleet and fp16 ===============')
    print('use_fleet: %d' % use_fleet)
    print('use_fp16: %d' % use_fp16)
    print('_nranks: %d' % _nranks)
    print('_local_rank: %d' % _local_rank)
    print()

    # 训练集
    train_dataset = COCO(cfg.train_path)
    train_img_ids = train_dataset.getImgIds()
    train_records = data_clean(train_dataset, train_img_ids, _catid2clsid,
                               cfg.train_pre_path)
    num_train = len(train_records)
    train_indexes = [i for i in range(num_train)]