예제 #1
0
    def forward(self, input_state, H, N, N_SYS_B, D):
        """
        Args:
            input_state: The initial state with default |0..>
            H: The target Hamiltonian
        Returns:
            The loss.
        """

        out_state = U_theta(self.theta, input_state, N, D)

        # rho_AB = utils.matmul(utils.matrix_conjugate_transpose(out_state), out_state)
        rho_AB = matmul(
            transpose(
                fluid.framework.ComplexVariable(out_state.real,
                                                -out_state.imag),
                perm=[1, 0]),
            out_state)

        # compute the partial trace and three losses
        rho_B = partial_trace(rho_AB, 2**(N - N_SYS_B), 2**(N_SYS_B), 1)
        rho_B_squre = matmul(rho_B, rho_B)
        loss1 = (trace(matmul(rho_B, H))).real
        loss2 = (trace(rho_B_squre)).real * 2
        loss3 = -(trace(matmul(rho_B_squre, rho_B))).real / 2

        loss = loss1 + loss2 + loss3  # 损失函数

        # option: if you want to check whether the imaginary part is 0, uncomment the following
        # print('loss_iminary_part: ', loss.numpy()[1])
        return loss - 3 / 2, rho_B
예제 #2
0
    def forward(self):
        # 生成初始的编码器 E 和解码器 D\n",
        E = Encoder(self.theta)
        E_dagger = dagger(E)
        D = E_dagger
        D_dagger = E

        # 编码量子态 rho_in
        rho_BA = matmul(matmul(E, self.rho_in), E_dagger)

        # 取 partial_trace() 获得 rho_encode 与 rho_trash
        rho_encode = partial_trace(rho_BA, 2**N_B, 2**N_A, 1)
        rho_trash = partial_trace(rho_BA, 2**N_B, 2**N_A, 2)

        # 解码得到量子态 rho_out
        rho_CA = kron(self.rho_C, rho_encode)
        rho_out = matmul(matmul(D, rho_CA), D_dagger)

        # 通过 rho_trash 计算损失函数

        zero_Hamiltonian = fluid.dygraph.to_variable(
            np.diag([1, 0]).astype('complex128'))
        loss = 1 - (trace(matmul(zero_Hamiltonian, rho_trash))).real

        return loss, self.rho_in, rho_out
예제 #3
0
파일: locc.py 프로젝트: Shahip2016/Quantum
    def __measure_parameterless(self, state, which_qubits, result_desired):
        r"""进行 01 测量。

        Args:
            state (ComplexVariable): 输入的量子态
            which_qubits (list): 测量作用的量子比特编号
            result_desired (list): 期望得到的测量结果,如 ``"0"``、``"1"`` 或者 ``["0", "1"]``

        Returns:
            ComplexVariable: 测量坍塌后的量子态
            ComplexVariable:测量坍塌得到的概率
            list: 测量得到的结果(0 或 1)
        """
        n = self.get_qubit_number()
        assert len(which_qubits) == len(result_desired), \
            "the length of qubits wanted to be measured and the result desired should be same"
        op_list = [np.eye(2, dtype=np.complex128)] * n
        for i, ele in zip(which_qubits, result_desired):
            k = int(ele)
            rho = np.zeros((2, 2), dtype=np.complex128)
            rho[int(k), int(k)] = 1
            op_list[i] = rho
        if n > 1:
            measure_operator = fluid.dygraph.to_variable(NKron(*op_list))
        else:
            measure_operator = fluid.dygraph.to_variable(op_list[0])
        state_measured = matmul(matmul(measure_operator, state),
                                dagger(measure_operator))
        prob = trace(
            matmul(matmul(dagger(measure_operator), measure_operator),
                   state)).real
        state_measured = elementwise_div(state_measured, prob)
        return state_measured, prob, result_desired
    def forward(self, state_in, label):
        """
        Args:
            state_in: The input quantum state, shape [-1, 1, 2^n]
            label: label for the input state, shape [-1, 1]
        Returns:
            The loss:
                L = ((<Z> + 1)/2 + bias - label)^2
        """

        # Numpy array -> variable
        Ob = fluid.dygraph.to_variable(Observable(self.n))
        label_pp = fluid.dygraph.to_variable(label)

        Utheta = U_theta(self.theta, n=self.n, depth=self.depth)
        U_dagger = dagger(Utheta)

        state_out = matmul(matmul(state_in, Utheta), U_dagger)

        E_Z = trace(matmul(state_out, Ob))

        # map <Z> to the predict label
        state_predict = E_Z.real * 0.5 + 0.5 + self.bias
        loss = fluid.layers.reduce_mean((state_predict - label_pp)**2)

        is_correct = fluid.layers.where(
            fluid.layers.abs(state_predict - label_pp) < 0.5).shape[0]
        acc = is_correct / label.shape[0]

        return loss, acc, state_predict.numpy()
예제 #5
0
    def forward(self, H, N, N_SYS_B, beta, D):
        # Apply quantum neural network onto the initial state
        rho_AB = U_theta(self.initial_state, self.theta, N, D)

        # Calculate the partial tarce to get the state rho_B of subsystem B
        rho_B = partial_trace(rho_AB, 2**(N - N_SYS_B), 2**(N_SYS_B), 1)

        # Calculate the three components of the loss function
        rho_B_squre = matmul(rho_B, rho_B)
        loss1 = (trace(matmul(rho_B, H))).real
        loss2 = (trace(rho_B_squre)).real * 2 / beta
        loss3 = -((trace(matmul(rho_B_squre, rho_B))).real + 3) / (2 * beta)

        # Get the final loss function
        loss = loss1 + loss2 + loss3

        return loss, rho_B
예제 #6
0
    def forward(self, H, N, N_SYS_B, beta, D):
        # 施加量子神经网络
        rho_AB = U_theta(self.initial_state, self.theta, N, D)

        # 计算偏迹 partial trace 来获得子系统B所处的量子态 rho_B
        rho_B = partial_trace(rho_AB, 2**(N - N_SYS_B), 2**(N_SYS_B), 1)

        # 计算三个子损失函数
        rho_B_squre = matmul(rho_B, rho_B)
        loss1 = (trace(matmul(rho_B, H))).real
        loss2 = (trace(rho_B_squre)).real * 2 / beta
        loss3 = -((trace(matmul(rho_B_squre, rho_B))).real + 3) / (2 * beta)

        # 最终的损失函数
        loss = loss1 + loss2 + loss3

        return loss, rho_B
예제 #7
0
 def test_complex_x(self):
     input = rand([2, 20, 2, 3]).astype(
         self._dtype) + 1j * rand([2, 20, 2, 3]).astype(self._dtype)
     for place in self._places:
         with dg.guard(place):
             var_x = dg.to_variable(input)
             result = cpx.trace(var_x, offset=1, axis1=0, axis2=2).numpy()
             target = np.trace(input, offset=1, axis1=0, axis2=2)
             self.assertTrue(np.allclose(result, target))
예제 #8
0
파일: locc.py 프로젝트: Shahip2016/Quantum
    def __measure_parameterized(self, state, which_qubits, result_desired,
                                theta):
        r"""进行参数化的测量。

        Args:
            state (ComplexVariable): 输入的量子态
            which_qubits (list): 测量作用的量子比特编号
            result_desired (list): 期望得到的测量结果,如 ``"0"``、``"1"`` 或者 ``["0", "1"]``
            theta (Variable): 测量运算的参数

        Returns:
            ComplexVariable: 测量坍塌后的量子态
            Variable:测量坍塌得到的概率
            list: 测量得到的结果(0 或 1)
        """
        n = self.get_qubit_number()
        assert len(which_qubits) == len(result_desired), \
            "the length of qubits wanted to be measured and the result desired should be same"
        op_list = [fluid.dygraph.to_variable(np.eye(2, dtype=np.complex128))
                   ] * n
        for idx in range(0, len(which_qubits)):
            i = which_qubits[idx]
            ele = result_desired[idx]
            if int(ele) == 0:
                basis0 = fluid.dygraph.to_variable(
                    np.array([[1, 0], [0, 0]], dtype=np.complex128))
                basis1 = fluid.dygraph.to_variable(
                    np.array([[0, 0], [0, 1]], dtype=np.complex128))
                rho0 = elementwise_mul(basis0, cos(theta[idx]))
                rho1 = elementwise_mul(basis1, sin(theta[idx]))
                rho = elementwise_add(rho0, rho1)
                op_list[i] = rho
            elif int(ele) == 1:
                # rho = diag(concat([cos(theta[idx]), sin(theta[idx])]))
                # rho = ComplexVariable(rho, zeros((2, 2), dtype="float64"))
                basis0 = fluid.dygraph.to_variable(
                    np.array([[1, 0], [0, 0]], dtype=np.complex128))
                basis1 = fluid.dygraph.to_variable(
                    np.array([[0, 0], [0, 1]], dtype=np.complex128))
                rho0 = elementwise_mul(basis0, sin(theta[idx]))
                rho1 = elementwise_mul(basis1, cos(theta[idx]))
                rho = elementwise_add(rho0, rho1)
                op_list[i] = rho
            else:
                print("cannot recognize the results_desired.")
            # rho = ComplexVariable(ones((2, 2), dtype="float64"), zeros((2, 2), dtype="float64"))
        measure_operator = fluid.dygraph.to_variable(op_list[0])
        if n > 1:
            for idx in range(1, len(op_list)):
                measure_operator = kron(measure_operator, op_list[idx])
        state_measured = matmul(matmul(measure_operator, state),
                                dagger(measure_operator))
        prob = trace(
            matmul(matmul(dagger(measure_operator), measure_operator),
                   state)).real
        state_measured = elementwise_div(state_measured, prob)
        return state_measured, prob, result_desired
예제 #9
0
    def forward(self, N):
        # 施加量子神经网络
        U = U_theta(self.theta, N)

        # rho_tilde 是将 U 作用在 rho 后得到的量子态 U*rho*U^dagger
        rho_tilde = matmul(matmul(U, self.rho), hermitian(U))

        # 计算损失函数
        loss = trace(matmul(self.sigma, rho_tilde))

        return loss.real, rho_tilde
예제 #10
0
    def forward(self, N):
        # Apply quantum neural network onto the initial state
        U = U_theta(self.theta, N)

        # rho_tilda is the quantum state obtained by acting U on rho, which is U*rho*U^dagger
        rho_tilde = matmul(matmul(U, self.rho), dagger(U))

        # Calculate loss function
        loss = trace(matmul(self.sigma, rho_tilde))

        return loss.real, rho_tilde
    def forward(self, x):
        rho_in = fluid.dygraph.to_variable(x)
        E = Encoder(self.theta)
        E_dagger = dagger(E)
        D = E_dagger
        D_dagger = E

        rho_BA = matmul(matmul(E, rho_in), E_dagger)

        rho_encode = partial_trace(rho_BA, 2**N_B, 2**N_A, 1)
        rho_trash = partial_trace(rho_BA, 2**N_B, 2**N_A, 2)

        rho_CA = kron(self.rho_C, rho_encode)
        rho_out = matmul(matmul(D, rho_CA), D_dagger)

        zero_Hamiltonian = fluid.dygraph.to_variable(
            np.diag([1, 0]).astype('complex128'))
        loss = 1 - (trace(matmul(zero_Hamiltonian, rho_trash))).real

        return loss, rho_out, rho_encode
예제 #12
0
    def expecval(self, H):
        r"""量子线路输出的量子态关于可观测量H的期望值。

        Hint:
            如果想输入的可观测量的矩阵为 :math:`0.7Z\otimes X\otimes I+0.2I\otimes Z\otimes I` 。则 ``H`` 应为 ``[[0.7, 'z0,x1'], [0.2, 'z1']]`` 。
        Args:
            H (list): 可观测量的相关信息
        Returns:
            Variable: 量子线路输出的量子态关于H的期望值

        代码示例:
        
        .. code-block:: python
            
            import numpy as np
            from paddle import fluid
            from paddle_quantum.circuit import UAnsatz
            n = 5
            H_info = [[0.1, 'x1'], [0.2, 'y0,z4']]
            theta = np.ones(3)
            input_state = np.ones(2**n)+0j
            input_state = input_state / np.linalg.norm(input_state)
            with fluid.dygraph.guard():
                input_state_var = fluid.dygraph.to_variable(input_state)
                theta = fluid.dygraph.to_variable(theta)
                cir = UAnsatz(n)
                cir.rx(theta[0], 0)
                cir.rz(theta[1], 1)
                cir.rx(theta[2], 2)
                cir.run_state_vector(input_state_var)
                expect_value = cir.expecval(H_info).numpy()
                print(f'计算得到的{H_info}期望值是{expect_value}')
        
        ::
        
            计算得到的[[0.1, 'x1'], [0.2, 'y0,z4']]期望值是[0.05403023]
        
        .. code-block:: python
            
            import numpy as np
            from paddle import fluid
            from paddle_quantum.circuit import UAnsatz
            n = 5
            H_info = [[0.1, 'x1'], [0.2, 'y0,z4']]
            theta = np.ones(3)
            input_state = np.diag(np.arange(2**n))+0j
            input_state = input_state / np.trace(input_state)
            with fluid.dygraph.guard():
                input_state_var = fluid.dygraph.to_variable(input_state)
                theta = fluid.dygraph.to_variable(theta)
                cir = UAnsatz(n)
                cir.rx(theta[0], 0)
                cir.ry(theta[1], 1)
                cir.rz(theta[2], 2)
                cir.run_density_matrix(input_state_var)
                expect_value = cir.expecval(H_info).numpy()
                print(f'计算得到的{H_info}期望值是{expect_value}')
        
        ::

            计算得到的[[0.1, 'x1'], [0.2, 'y0,z4']]期望值是[-0.02171538]
        """
        if self.__run_state == 'state_vector':
            return vec_expecval(H, self.__state).real
        elif self.__run_state == 'density_matrix':
            state = self.__state
            H_mat = fluid.dygraph.to_variable(pauli_str_to_matrix(H, self.n))
            return trace(matmul(state, H_mat)).real
        else:
            # Raise error
            raise ValueError(
                "no state for measurement; please run the circuit first")