def test_a_sync_optimizer2(self): os.environ["TRAINING_ROLE"] = "TRAINER" import paddle.distributed.fleet as fleet main_program = paddle.fluid.Program() startup_program = paddle.fluid.Program() paddle.fluid.framework.switch_main_program(main_program) paddle.fluid.framework.switch_startup_program(startup_program) fleet.init(role_maker.PaddleCloudRoleMaker()) input_x = paddle.fluid.layers.data( name="x", shape=[32], dtype='float32') input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy( input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) os.environ["FLAGS_LAUNCH_BARRIER"] = "0" strategy = paddle.distributed.fleet.DistributedStrategy() strategy.auto = True optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) self.assertTrue(fleet._final_strategy().a_sync) a_sync_configs = fleet._final_strategy().a_sync_configs self.assertTrue(a_sync_configs['k_steps'] == 800)
def test_amp_recompute_lars_dgc_not_apply_optimizer(self): """ test amp + recompute + lars + dgc, amp -/-> dgc, max_path is amp-->recompute-->lars """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'dgc') self.set_strategy(strategy, 'amp') self.set_strategy(strategy, 'recompute') self.set_strategy(strategy, 'lars') self.optimizer(avg_cost, strategy, train_prog, startup_prog) strategy = fleet._final_strategy() ops = [op.type for op in avg_cost.block.ops] outs = [ op.output('Out')[0] for op in avg_cost.block.ops if op.type == 'mul' ] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) # recompute self.assertIn('subprog', ''.join(outs)) # lars self.assertIn('lars_momentum', ops) # dgc not apply self.assertFalse(strategy.dgc)
def test_a_sync_optimizer3(self): os.environ["TRAINING_ROLE"] = "TRAINER" import paddle.distributed.fleet as fleet main_program = paddle.fluid.Program() startup_program = paddle.fluid.Program() paddle.fluid.framework.switch_main_program(main_program) paddle.fluid.framework.switch_startup_program(startup_program) fleet.init(role_maker.PaddleCloudRoleMaker()) input_x = paddle.fluid.layers.data(name="x", shape=[-1, 1], dtype="int64", lod_level=1, append_batch_size=False) x_embedding = paddle.fluid.layers.embedding( is_distributed=False, input=input_x, size=[1000000000, 100000], param_attr=paddle.fluid.ParamAttr( name="embedding", initializer=paddle.fluid.initializer.Constant(value=0.01)), is_sparse=True) input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64') fc_1 = paddle.fluid.layers.fc(input=x_embedding, size=64, act='tanh') fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh') prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax') cost = paddle.fluid.layers.cross_entropy(input=prediction, label=input_y) avg_cost = paddle.fluid.layers.mean(x=cost) os.environ["FLAGS_LAUNCH_BARRIER"] = "0" strategy = paddle.distributed.fleet.DistributedStrategy() strategy.auto = True optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) self.assertTrue(fleet._final_strategy().a_sync) a_sync_configs = fleet._final_strategy().a_sync_configs self.assertTrue(a_sync_configs['k_steps'] == 0)
def test_amp_recompute_optimizer(self): """ test amp + recompute """ train_prog, startup_prog = fluid.Program(), fluid.Program() avg_cost, strategy = self.net(train_prog, startup_prog) self.set_strategy(strategy, 'amp') self.set_strategy(strategy, 'recompute') self.optimizer(avg_cost, strategy, train_prog, startup_prog) strategy = fleet._final_strategy() ops = [op.type for op in avg_cost.block.ops] outs = [ op.output('Out')[0] for op in avg_cost.block.ops if op.type == 'mul' ] self.assertIn('cast', ops) self.assertIn('check_finite_and_unscale', ops) # recompute self.assertIn('subprog', ''.join(outs))
def test_single_gpu(self): paddle.enable_static() fleet.init(is_collective=True) main_program = paddle.static.Program() startup_program = paddle.static.Program() strategy = fleet.DistributedStrategy() strategy.gradient_scale_configs = {'scale_strategy': 'sum'} with fluid.program_guard(main_program, startup_program): with fluid.unique_name.guard(): input_x = paddle.static.data(name="x", shape=[None, 32], dtype='float32') input_y = paddle.static.data(name="y", shape=[None, 1], dtype='int64') cost = self.mlp(input_x=input_x, input_y=input_y) output_name = cost.name optimizer = fleet.distributed_optimizer( fluid.optimizer.Adam(), strategy) optimizer.minimize(cost) final_strategy = fleet._final_strategy() assert final_strategy.gradient_scale_configs['scale_strategy'] == 'sum'
def train(args): log.info("pretraining start") profile = False place = fluid.CUDAPlace(int(os.environ.get('FLAGS_selected_gpus', 0))) # set seed random.seed(args.seed) np.random.seed(args.seed) paddle.seed(args.seed) get_rng_state_tracker().add('global_seed', args.seed) get_rng_state_tracker().add('local_seed', args.seed + fleet.worker_index() + 2021) # define execution strategy exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 2 exec_strategy.num_iteration_per_drop_scope = 1 # define distribution strategy dist_strategy = fleet.DistributedStrategy() dist_strategy.execution_strategy = exec_strategy dist_strategy.nccl_comm_num = 3 if args.use_recompute: log.info("using recompute.") dist_strategy.recompute = args.use_recompute dist_strategy.sharding = args.use_sharding dist_strategy.pipeline = args.num_pp > 1 # define topology structure for dp/pp/mp topo = Topology(rank=fleet.worker_index(), world_size=fleet.worker_num(), dp=args.num_dp, pp=args.num_pp, sharding=args.num_sharding, mp=args.num_mp) is_last = False if topo.pp.rank == (topo.pp.size - 1): is_last = True dp_sharding_rank = topo.dp.rank * topo.sharding.size + topo.sharding.rank dp_worldsize = topo.dp.size * topo.sharding.size bsz_per_dp = args.global_bsz // dp_worldsize micro_bsz = args.micro_bsz assert args.global_bsz % micro_bsz == 0, f"cannot do gradient accumulate, globa_bsz: {args.bsz} micro_bsz: {micro_bsz}" acc_steps = bsz_per_dp // micro_bsz # sharding \ model parallel \ pipeline assert dist_strategy.sharding == True dist_strategy.sharding_configs = { "segment_broadcast_MB": 32, "sharding_degree": args.num_sharding, "mp_degree": args.num_mp, "pp_degree": args.num_pp, "dp_degree": args.num_dp, "optimize_offload": True, } dist_strategy.pipeline_configs = { "schedule_mode": "1F1B", "micro_batch_size": micro_bsz, "accumulate_steps": acc_steps, } log.info( f"using globa_bsz: {args.global_bsz} micro_bsz: {micro_bsz}, acc_steps: {acc_steps}" ) dist_strategy.amp = args.use_amp dist_strategy.amp_configs = { "custom_white_list": ['softmax', 'layer_norm', 'gelu'], "init_loss_scaling": 32768, "decr_every_n_nan_or_inf": 2, "incr_every_n_steps": 1000, "incr_ratio": 2.0, "use_dynamic_loss_scaling": True, "decr_ratio": 0.5, "use_pure_fp16": False, "use_fp16_guard": False, } dist_strategy.lamb = args.use_lamb dist_strategy.lamb_configs = { 'lamb_weight_decay': 0.01, 'exclude_from_weight_decay': ['layer_norm_bias', 'layer_norm_scale', '.b_0'] } train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): with fluid.unique_name.guard(): graph_vars = create_model(args, 'train', micro_bsz, dp_sharding_rank, dp_worldsize, topo) data_loader = graph_vars['data_loader'] for op in train_program.global_block().ops: if op.type == 'fill_constant': op._set_attr( 'op_device', "gpu:0" ) # XXX: hack: https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/layers/tensor.py#L1376 if args.use_recompute: dist_strategy.recompute_configs = { "checkpoints": graph_vars['checkpoints'], # "enable_offload": args.use_offload, # "checkpoint_shape": [micro_bsz, args.max_seq_len, 4096], } log.debug("base lr: {}".format(args.learning_rate)) scheduled_lr = linear_warmup_decay( learning_rate=args.learning_rate, warmup_steps=args.warmup_steps, num_train_steps=args.num_train_steps) clip_norm_thres = 1.0 if paddlenlp.ops.optimizer._jit_compile(): optimizer = paddlenlp.ops.optimizer.AdamwOptimizer( learning_rate=scheduled_lr, grad_clip=fluid.clip.GradientClipByGlobalNorm( clip_norm=clip_norm_thres), weight_decay=args.weight_decay, apply_decay_param_fun=apply_weight_decay_fun) else: optimizer = fluid.optimizer.Adam( learning_rate=scheduled_lr, grad_clip=fluid.clip.GradientClipByGlobalNorm( clip_norm=clip_norm_thres), #multi_precision=True, #weight_decay=args.weight_decay, # merge this pr to use weight_decay: https://github.com/PaddlePaddle/Paddle/pull/29248 #exclude_from_weight_decay_fn=exclude_from_weight_decay ) optimizer = fleet.distributed_optimizer(optimizer, dist_strategy) log.info(f"using dist strategy: {dist_strategy}") optimizer.minimize(graph_vars['total_loss']) final_strategy = fleet._final_strategy() applied_meta_list = fleet._get_applied_meta_list() log.info("final strategy: {}".format(final_strategy)) log.info("applied_meta_list: {}".format(applied_meta_list)) program_desc_dir = os.path.join(args.output_dir, "program_desc") if not os.path.isdir(program_desc_dir): os.mkdir(program_desc_dir) with open( program_desc_dir + "/main_program.txt.%d" % (int(os.environ.get('FLAGS_selected_gpus', 0))), 'w') as f: f.write(str(train_program)) with open( program_desc_dir + "/startup_program.txt.%d" % (int(os.environ.get('FLAGS_selected_gpus', 0))), 'w') as f: f.write(str(startup_program)) exe = fluid.Executor(place) exe.run(startup_program) optimizer.amp_init(place) #save_path = os.path.join(args.output_dir, 'step_0') #log.debug("saving models to {}".format(save_path)) #save_persistables(exe, save_path, train_program) if args.init_checkpoint and args.init_checkpoint != "": log.info(' ') log.info( '############################WARNING############################') log.info( '####### using ini_checkpoint, not init_pretraining_params ####') log.info( '## meaning hyper param e.g. lr will inherit from checkpoint ##') log.info( '###############################################################') init_checkpoint(exe, args.init_checkpoint, train_program) log.info(' ') output_dir = args.output_dir save_steps = args.save_steps total_time = 0 cost_vals, lm_losses, sop_accs = [], [], [] global_steps = args.global_steps + 1 steps = 0 log_path = 'train_log/node-%d' % fleet.worker_index() start_time = time.time() with LogWriter(os.path.join(args.output_dir, log_path)) as swriter: data_loader.start() while True: #if steps < global_steps: # steps += 1 # continue if not is_last: fetch_list = [] else: fetch_list = [ graph_vars['total_loss'], graph_vars['mean_mask_lm_loss'], scheduled_lr ] if args.use_sop: fetch_list.extend( [graph_vars['sop_acc'], graph_vars['sop_loss']]) if args.use_amp: loss_scaling = train_program.global_block( ).vars['loss_scaling_0'] fetch_list.append(loss_scaling) ret = exe.run(train_program, fetch_list=fetch_list ) # run one mini-batch(=acc_steps micro-batch) #use_program_cache=True) steps += 1 if is_last: if args.use_sop and args.use_amp: cost_val, lm_loss, lr, sop_acc, sop_loss, loss_scaling_0 = ret elif args.use_sop: cost_val, lm_loss, lr, sop_acc, sop_loss = ret elif args.use_amp: cost_val, lm_loss, lr, loss_scaling_0 = ret else: cost_val, lm_loss, lr = ret cost_vals.append(cost_val[0]) lm_losses.append(lm_loss[0]) if args.use_sop: sop_accs.append(sop_acc[0]) if steps > 0 and (steps % args.log_steps) == 0: end_time = time.time() total_time = end_time - start_time cost_val = np.mean(cost_vals) lm_loss = np.mean(lm_losses) swriter.add_scalar('loss/total_loss', cost_val, steps) swriter.add_scalar('loss/mlm_loss', lm_loss, steps) swriter.add_scalar('lr/scheduled_lr', lr[0], steps) if args.use_sop: sop_acc = np.mean(sop_accs) swriter.add_scalar('loss/sop_loss', sop_loss, steps) swriter.add_scalar('train/sop_acc', sop_acc, steps) else: sop_acc = 0.0 if args.use_amp: swriter.add_scalar('lr/loss_scaling', loss_scaling_0[0], steps) else: loss_scaling_0 = [0.0] log.info( "worker_index: %d, step: %d, cost: %f, " "mlm loss: %f, sentence order acc: %f, " "speed: %f steps/s, " "speed: %f samples/s, " "speed: %f tokens/s, " "learning rate: %.3e, loss_scalings: %f" % (fleet.worker_index(), steps, cost_val, lm_loss, sop_acc, args.log_steps / total_time, args.log_steps * args.global_bsz / total_time, args.log_steps * args.global_bsz * args.max_seq_len / total_time, lr[0], loss_scaling_0[0])) cost_vals, lm_losses, sop_accs = [], [], [] start_time = time.time() # TODO: add evaluation if steps > 0 and args.eval_steps > 0 and steps % args.eval_steps == 0: pass if steps > 0 and args.save_steps > 0 and steps % args.save_steps == 0: if args.use_hybrid_dp and fleet.worker_index() > 8: continue save_path = os.path.join(output_dir, 'step_' + str(steps)) log.debug("saving models to {}".format(save_path)) save_persistables(exe, save_path, train_program) if steps == args.num_train_steps: if args.use_hybrid_dp and fleet.worker_index() > 8: continue save_path = os.path.join(output_dir, 'final_step_' + str(steps)) save_persistables(exe, save_path, train_program) log.debug("saving final models to {}".format(save_path)) log.debug("end of training, total steps: {}".format(steps))