def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(LambOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) opt = self.inner_opt if not isinstance(opt, AdamOptimizer): return configs = self.user_defined_strategy.lamb_configs if len(configs['exclude_from_weight_decay']) == 0: _exclude_from_weight_decay_fn = None else: def exclude_fn(param): exclude_list = configs['exclude_from_weight_decay'] for name in exclude_list: if param.name.endswith(name): return True return False _exclude_from_weight_decay_fn = exclude_fn self.lamb_opt = LAMB( learning_rate=opt._learning_rate, lamb_weight_decay=configs['lamb_weight_decay'], beta1=opt._beta1, beta2=opt._beta2, epsilon=opt._epsilon, parameter_list=opt._parameter_list, regularization=opt.regularization, grad_clip=opt._grad_clip, exclude_from_weight_decay_fn=_exclude_from_weight_decay_fn, name=opt._name)
def get_optimizer(self): optimizer = LambOptimizer( learning_rate=0.002, exclude_from_weight_decay_fn=exclude_fn) return optimizer
def get_optimizer_dygraph(self, parameter_list): optimizer = LambOptimizer( learning_rate=0.002, exclude_from_weight_decay_fn=exclude_fn, parameter_list=parameter_list) return optimizer
class LambOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(LambOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.lamb_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = ["GraphExecutionOptimizer"] self.meta_optimizers_black_list = [] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(LambOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) opt = self.inner_opt if not isinstance(opt, AdamOptimizer): return configs = self.user_defined_strategy.lamb_configs if len(configs['exclude_from_weight_decay']) == 0: _exclude_from_weight_decay_fn = None else: def exclude_fn(param): exclude_list = configs['exclude_from_weight_decay'] for name in exclude_list: if param.name.endswith(name): return True return False _exclude_from_weight_decay_fn = exclude_fn self.lamb_opt = LAMB( learning_rate=opt._learning_rate, lamb_weight_decay=configs['lamb_weight_decay'], beta1=opt._beta1, beta2=opt._beta2, epsilon=opt._epsilon, parameter_list=opt._parameter_list, regularization=opt.regularization, grad_clip=opt._grad_clip, exclude_from_weight_decay_fn=_exclude_from_weight_decay_fn, name=opt._name) def _can_apply(self): if not self.role_maker._is_collective: return False if self.user_defined_strategy.lamb: if not isinstance(self.inner_opt, AdamOptimizer): logging.warn( "lamb need the inner optimizer to be AdamOptimizer optimizer but got {}.". format(self.inner_opt.type)) return False return True return False def _disable_strategy(self, dist_strategy): dist_strategy.lamb = False dist_strategy.lamb_configs = {} def _enable_strategy(self, dist_strategy, context): dist_strategy.lamb = True dist_strategy.lamb_configs = { "lamb_weight_decay": 0.01, "exclude_from_weight_decay": [] } def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): return self.lamb_opt.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) # the following function will be used by AMP if both LARS and AMP are turn on together. def apply_gradients(self, params_grads): return self.lamb_opt.apply_gradients(params_grads=params_grads) def apply_optimize(self, loss, startup_program, params_grads): return self.lamb_opt.apply_optimize( loss, startup_program=startup_program, params_grads=params_grads) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): optimize_ops, params_grads = \ self.lamb_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads