예제 #1
0
    def __init__(
            self,
            num_channels: int,
            num_filters: int,
            filter_size: int,
            stride: int = 1,
            groups: int = 1,
            is_vd_mode: bool = False,
            act: str = None,
            name: str = None,
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = AvgPool2d(kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
예제 #2
0
 def __init__(self, name: str):
     super(InceptionA, self).__init__()
     self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
     self._conv2 = ConvBNLayer(384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
     self._conv3_1 = ConvBNLayer(384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
     self._conv3_2 = ConvBNLayer(64, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3")
     self._conv4_1 = ConvBNLayer(384, 64, 1, act="relu", name="inception_a" + name + "_3x3_2_reduce")
     self._conv4_2 = ConvBNLayer(64, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3_2")
     self._conv4_3 = ConvBNLayer(96, 96, 3, padding=1, act="relu", name="inception_a" + name + "_3x3_3")
예제 #3
0
 def __init__(self, name: str = None):
     super(InceptionB, self).__init__()
     self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
     self._conv2 = ConvBNLayer(1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
     self._conv3_1 = ConvBNLayer(1024, 192, 1, act="relu", name="inception_b" + name + "_1x7_reduce")
     self._conv3_2 = ConvBNLayer(192, 224, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7")
     self._conv3_3 = ConvBNLayer(224, 256, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1")
     self._conv4_1 = ConvBNLayer(1024, 192, 1, act="relu", name="inception_b" + name + "_7x1_2_reduce")
     self._conv4_2 = ConvBNLayer(192, 192, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7_2")
     self._conv4_3 = ConvBNLayer(192, 224, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1_2")
     self._conv4_4 = ConvBNLayer(224, 224, (1, 7), padding=(0, 3), act="relu", name="inception_b" + name + "_1x7_3")
     self._conv4_5 = ConvBNLayer(224, 256, (7, 1), padding=(3, 0), act="relu", name="inception_b" + name + "_7x1_3")
예제 #4
0
 def __init__(self, name: str = None):
     super(InceptionC, self).__init__()
     self._pool = AvgPool2d(kernel_size=3, stride=1, padding=1)
     self._conv1 = ConvBNLayer(1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
     self._conv2 = ConvBNLayer(1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
     self._conv3_0 = ConvBNLayer(1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
     self._conv3_1 = ConvBNLayer(384, 256, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3")
     self._conv3_2 = ConvBNLayer(384, 256, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1")
     self._conv4_0 = ConvBNLayer(1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
     self._conv4_00 = ConvBNLayer(384, 448, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3_2")
     self._conv4_000 = ConvBNLayer(
         448, 512, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1_2")
     self._conv4_1 = ConvBNLayer(512, 256, (1, 3), padding=(0, 1), act="relu", name="inception_c" + name + "_1x3_3")
     self._conv4_2 = ConvBNLayer(512, 256, (3, 1), padding=(1, 0), act="relu", name="inception_c" + name + "_3x1_3")
예제 #5
0
    def __init__(self, class_dim: int = 1000, load_checkpoint: str = None):
        super(GoogleNet, self).__init__()
        self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
        self._pool = MaxPool2d(kernel_size=3, stride=2)
        self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
        self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")

        self._ince3a = Inception(192,
                                 192,
                                 64,
                                 96,
                                 128,
                                 16,
                                 32,
                                 32,
                                 name="ince3a")
        self._ince3b = Inception(256,
                                 256,
                                 128,
                                 128,
                                 192,
                                 32,
                                 96,
                                 64,
                                 name="ince3b")

        self._ince4a = Inception(480,
                                 480,
                                 192,
                                 96,
                                 208,
                                 16,
                                 48,
                                 64,
                                 name="ince4a")
        self._ince4b = Inception(512,
                                 512,
                                 160,
                                 112,
                                 224,
                                 24,
                                 64,
                                 64,
                                 name="ince4b")
        self._ince4c = Inception(512,
                                 512,
                                 128,
                                 128,
                                 256,
                                 24,
                                 64,
                                 64,
                                 name="ince4c")
        self._ince4d = Inception(512,
                                 512,
                                 112,
                                 144,
                                 288,
                                 32,
                                 64,
                                 64,
                                 name="ince4d")
        self._ince4e = Inception(528,
                                 528,
                                 256,
                                 160,
                                 320,
                                 32,
                                 128,
                                 128,
                                 name="ince4e")

        self._ince5a = Inception(832,
                                 832,
                                 256,
                                 160,
                                 320,
                                 32,
                                 128,
                                 128,
                                 name="ince5a")
        self._ince5b = Inception(832,
                                 832,
                                 384,
                                 192,
                                 384,
                                 48,
                                 128,
                                 128,
                                 name="ince5b")

        self._pool_5 = AvgPool2d(kernel_size=7, stride=7)

        self._drop = Dropout(p=0.4, mode="downscale_in_infer")
        self._fc_out = Linear(1024,
                              class_dim,
                              weight_attr=xavier(1024, 1, "out"),
                              bias_attr=ParamAttr(name="out_offset"))

        if load_checkpoint is not None:
            model_dict = paddle.load(load_checkpoint)[0]
            self.set_dict(model_dict)
            print("load custom checkpoint success")

        else:
            checkpoint = os.path.join(self.directory,
                                      'googlenet_imagenet.pdparams')
            if not os.path.exists(checkpoint):
                os.system(
                    'wget https://paddlehub.bj.bcebos.com/dygraph/image_classification/googlenet_imagenet.pdparams -O'
                    + checkpoint)
            model_dict = paddle.load(checkpoint)[0]
            self.set_dict(model_dict)
            print("load pretrained checkpoint success")