def setUp(self): self.program = Program() self.fake_program = Program() self.place = core.CPUPlace() self.input_names = ['X', 'Out'] self.input_vars = { name: self.program.global_block().create_var(name=name, shape=[2, 3], dtype='float32') for name in self.input_names } self.input_vars["Out@GRAD"] = \ self.fake_program.global_block().create_var( name="Out@GRAD", shape=[2, 3], dtype='float32') self.output_names = ['X@GRAD'] self.output_vars = { name: self.program.global_block().create_var(name=name, shape=[2, 3], dtype='float32') for name in self.output_names } self.program.global_block().append_op(type='rnn_memory_helper_grad', inputs=self.input_vars, outputs=self.output_vars, attrs={})
def test_recognize_digits_conv(self): program = Program() with program_guard(program, startup_program=Program()): images = layers.data(name='pixel', shape=[1, 28, 28], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') conv_pool_1 = nets.simple_img_conv_pool(input=images, filter_size=5, num_filters=2, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = nets.simple_img_conv_pool(input=conv_pool_1, filter_size=5, num_filters=4, pool_size=2, pool_stride=2, act="relu") predict = layers.fc(input=conv_pool_2, size=10, act="softmax") cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) program.append_backward(avg_cost) print(str(program))
def setup_program(self): self.main_program = Program() self.startup_program = Program() self.p_info = { "main_program": self.main_program, "startup_program": self.startup_program } self.place = core.CPUPlace()
def test_simple_conv2d(self): program = Program() with program_guard(program, startup_program=Program()): images = layers.data(name='pixel', shape=[3, 48, 48], dtype='int32') layers.conv2d(input=images, num_filters=3, filter_size=[4, 4]) print(str(program))
def test_dropout_layer(self): main_program = Program() startup_program = Program() images = fluid.layers.data(name='pixel', shape=[3, 48, 48], dtype='float32', main_program=main_program) fluid.layers.dropout(x=images, dropout_prob=0.5, main_program=main_program, startup_program=startup_program)
def test_fit_a_line(self): program = Program() with program_guard(program, startup_program=Program()): x = layers.data(name='x', shape=[13], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) y = layers.data(name='y', shape=[1], dtype='float32') cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(x=cost) self.assertIsNotNone(avg_cost) program.append_backward(avg_cost) print(str(program))
def test_program_clone_with_parameter(self): main_program = Program() startup_program = Program() kwargs = { 'main_program': main_program, 'startup_program': startup_program } d = layers.data(name='x', shape=[784], dtype='float32', **kwargs) hidden = layers.fc(input=d, size=100, **kwargs) layers.fc(input=hidden, size=100, **kwargs) new_program = main_program.clone() self.assertNotEqual(0, len(new_program.blocks[0].all_parameters()))
def test_img_conv_group(self): main_program = Program() startup_program = Program() images = fluid.layers.data(name='pixel', shape=[3, 48, 48], dtype='float32', main_program=main_program, startup_program=startup_program) conv1 = conv_block(images, 64, 2, [0.3, 0], main_program, startup_program) conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], main_program, startup_program)
def test_recognize_digits_mlp(self): program = Program() with program_guard(program, startup_program=Program()): # Change g_program, so the rest layers use `g_program` images = layers.data(name='pixel', shape=[784], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') predict = layers.fc(input=hidden2, size=10, act='softmax') cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) self.assertIsNotNone(avg_cost) print(str(program))
def save_vars(executor, dirname, main_program=None, vars=None, predicate=None): """ Save variables to directory by executor. :param executor: executor that save variable :param dirname: directory path :param main_program: program. If vars is None, then filter all variables in this program which fit `predicate`. Default g_program. :param predicate: The Predicate describes a callable that returns a variable as a bool. If it returns true, the variables will be saved. :param vars: variables need to be saved. If specify vars, program & predicate will be ignored :return: None """ if vars is None: if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program should be as Program type or None") save_vars(executor, dirname=dirname, vars=filter(predicate, main_program.list_vars())) else: save_program = Program() save_block = save_program.global_block() for each_var in vars: new_var = _clone_var_in_block_(save_block, each_var) save_block.append_op( type='save', inputs={'X': [new_var]}, outputs={}, attrs={'file_path': os.path.join(dirname, new_var.name)}) executor.run(save_program)
def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0): place = self.place() program = Program() x = layers.data(name='x', shape=[10], main_program=program) x.persistable = True table = layers.lod_rank_table(x, level=level, main_program=program) max_len = layers.max_sequence_len(table, main_program=program) max_len.persistable = True array = layers.lod_tensor_to_array(x, table, main_program=program) array.persistable = True result = layers.array_to_lod_tensor(array, table, main_program=program) result.persistable = True exe = Executor(place) scope = core.Scope() exe.run(program, feed={'x': tensor}, scope=scope) var = scope.find_var(array.name) array = var.get_lod_tensor_array() if expect_array is not None and expect_lod is not None: self.check_array_same(array, expect_array, expect_lod) self.check_tensor_same( scope.find_var(result.name).get_tensor(), tensor) self.assertEqual( numpy.array(scope.find_var(max_len.name).get_tensor())[0], expect_max_len)
def test_grad(self): place = core.CPUPlace() program = Program() x = layers.data(name='x', shape=[1], dtype='float32', main_program=program, stop_gradient=False) table = layers.lod_rank_table(x, level=0, main_program=program) array = layers.lod_tensor_to_array(x, table, main_program=program) result = layers.array_to_lod_tensor(array, table, main_program=program) mean = layers.mean(x=result, main_program=program) append_backward_ops(mean) tensor = core.LoDTensor() tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place) tensor.set_lod([[0, 3, 9, 10]]) g_vars = program.global_block().var(x.name + "@GRAD") exe = Executor(place) g_out = [ numpy.array(item).sum() for item in exe.run(program, feed={'x': tensor}, fetch_list=[g_vars], return_numpy=False) ] g_out_sum = numpy.array(g_out).sum() self.assertAlmostEqual(1.0, g_out_sum, delta=0.1)
def test_mult_input(self): program = Program() block = program.current_block() sum_x1 = block.create_var(dtype="int", shape=[3, 4], lod_level=0, name="sum.x1") sum_x2 = block.create_var(dtype="int", shape=[3, 4], lod_level=0, name="sum.x2") sum_x3 = block.create_var(dtype="int", shape=[3, 4], lod_level=0, name="sum.x3") sum_out = block.create_var(dtype="int", shape=[3, 4], lod_level=0, name="sum.out") sum_op = block.append_op(type="sum", inputs={"X": [sum_x1, sum_x2, sum_x3]}, outputs={"Out": sum_out}) self.assertEqual(sum_op.type, "sum") self.assertEqual(sum_op.input_names, ["X"]) self.assertEqual(sum_op.input("X"), ["sum.x1", "sum.x2", "sum.x3"]) self.assertEqual(sum_op.output_names, ["Out"]) self.assertEqual(sum_op.output("Out"), ["sum.out"]) self.assertEqual(sum_op.idx, 0) self.assertEqual(sum_out.op, sum_op)
def test_sigmoid_cross_entropy(self): program = Program() with program_guard(program): dat = layers.data(name='data', shape=[10], dtype='float32') lbl = layers.data(name='label', shape=[10], dtype='float32') self.assertIsNotNone( layers.sigmoid_cross_entropy_with_logits(x=dat, label=lbl)) print(str(program))
def test_elementwise_add_with_act(self): main_program = Program() startup_program = Program() image1 = fluid.layers.data(name='pixel1', shape=[3, 48, 48], dtype='float32', main_program=main_program, startup_program=startup_program) image2 = fluid.layers.data(name='pixel2', shape=[3, 48, 48], dtype='float32', main_program=main_program, startup_program=startup_program) out = fluid.layers.elementwise_add(x=image1, y=image2, act='relu', main_program=main_program, startup_program=startup_program)
def test_batch_norm_layer(self): main_program = Program() startup_program = Program() images = fluid.layers.data(name='pixel', shape=[3, 48, 48], dtype='float32', main_program=main_program) hidden1 = fluid.layers.batch_norm(input=images, main_program=main_program, startup_program=startup_program) hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu', main_program=main_program) hidden3 = fluid.layers.batch_norm(input=hidden2, main_program=main_program, startup_program=startup_program) print str(main_program)
def test_word_embedding(self): program = Program() with program_guard(program, startup_program=Program()): dict_size = 10000 embed_size = 32 first_word = layers.data(name='firstw', shape=[1], dtype='int64') second_word = layers.data(name='secondw', shape=[1], dtype='int64') third_word = layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = layers.data(name='forthw', shape=[1], dtype='int64') next_word = layers.data(name='nextw', shape=[1], dtype='int64') embed_first = layers.embedding(input=first_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_second = layers.embedding(input=second_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_third = layers.embedding(input=third_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') embed_forth = layers.embedding(input=forth_word, size=[dict_size, embed_size], dtype='float32', param_attr='shared_w') concat_embed = layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1) hidden1 = layers.fc(input=concat_embed, size=256, act='sigmoid') predict_word = layers.fc(input=hidden1, size=dict_size, act='softmax') cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = layers.mean(x=cost) self.assertIsNotNone(avg_cost) print(str(program))
def test_linear_chain_crf(self): program = Program() with program_guard(program, startup_program=Program()): label_dict_len = 10 images = layers.data(name='pixel', shape=[784], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') hidden = layers.fc(input=images, size=128) crf = layers.linear_chain_crf(input=hidden, label=label, param_attr=ParamAttr(name="crfw")) crf_decode = layers.crf_decoding(input=hidden, param_attr=ParamAttr(name="crfw")) layers.chunk_eval(input=crf_decode, label=label, chunk_scheme="IOB", num_chunk_types=(label_dict_len - 1) / 2) self.assertNotEqual(crf, None) self.assertNotEqual(crf_decode, None) print(str(program))
def setUp(self): self.program = Program() self.place = core.CPUPlace() self.X = self.program.global_block().create_var(name='X', shape=[2, 3], dtype='float32') self.Out = self.program.global_block().create_var(name='Out', shape=[2, 3], dtype='float32') self.program.global_block().append_op(type='rnn_memory_helper', inputs={"X": self.X}, outputs={"Out": self.Out}, attrs={})
def main(self, tensor, mask, expect_true, expect_false, expect_out, level=0): place = self.place() program = Program() x = layers.data(name='x', shape=[1], main_program=program) x.persistable = True y = layers.data(name='y', shape=[1], main_program=program) y.persistable = True out_true, out_false = layers.split_lod_tensor(input=x, mask=y, level=level, main_program=program) out_true.persistable = True out_false.persistable = True out = layers.merge_lod_tensor(in_true=out_true, in_false=out_false, mask=y, x=x, level=level, main_program=program) out.persistable = True exe = Executor(place) scope = core.Scope() exe.run(program, feed={ 'x': tensor, 'y': mask }, scope=scope, return_numpy=False) var_true = scope.find_var(out_true.name).get_tensor() var_false = scope.find_var(out_false.name).get_tensor() var_out = scope.find_var(out.name).get_tensor() self.check_tensor_same(var_true, expect_true) self.check_tensor_same(var_false, expect_false) self.check_tensor_same(var_out, expect_out)
def get_parameter_value(para, executor): """ Get the LoDTensor for the parameter :param executor: executor for retrieving the value :param para: the given parameter :return: the LoDTensor for the parameter """ assert is_parameter(para) get_program = Program() block = get_program.global_block() new_var = _clone_var_in_block_(block, para) return executor.run(get_program, feed={}, fetch_list=[new_var])[0]
def test_op_desc_creation(self): program = Program() block = program.current_block() mul_x = block.create_var(dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var(dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var(dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mul_op = block.append_op(type="mul", inputs={ "X": [mul_x], "Y": mul_y }, outputs={"Out": [mul_out]}, attrs={"x_num_col_dims": 1}) self.assertNotEqual(str(mul_op), "") self.assertEqual(mul_op.type, "mul") self.assertEqual(mul_op.input_names, ["X", "Y"]) self.assertEqual(mul_op.input("X"), ["mul.x"]) self.assertEqual(mul_op.input("Y"), ["mul.y"]) self.assertEqual(mul_op.output_names, ["Out"]) self.assertEqual(mul_op.output("Out"), ["mul.out"]) self.assertEqual(set(mul_op.attr_names), set(["x_num_col_dims", "y_num_col_dims"])) self.assertEqual(mul_op.has_attr("x_num_col_dims"), True) self.assertEqual(mul_op.attr_type("x_num_col_dims"), core.AttrType.INT) self.assertEqual(mul_op.attr("x_num_col_dims"), 1) self.assertEqual(mul_op.has_attr("y_num_col_dims"), True) self.assertEqual(mul_op.attr_type("y_num_col_dims"), core.AttrType.INT) self.assertEqual(mul_op.attr("y_num_col_dims"), 1) self.assertEqual(mul_op.idx, 0) self.assertEqual(mul_out.op, mul_op)
def test_program_clone(self): prog = Program() x = prog.global_block().create_var(name='X', shape=[1000, 784], dtype='float32') y = prog.global_block().create_var(name='Y', shape=[784, 100], dtype='float32') out = prog.global_block().create_var(name='Out', dtype='float32') prog.global_block().append_op(type="mul", inputs={ 'X': [x], 'Y': [y] }, outputs={'Out': [out]}) # FIXME(yuyang18): We manual compare the output string, since the order # of variable could be changed. print(prog) print(prog.clone())
def test_parse_program_from_string(self): prog = Program() x = prog.global_block().create_var(name='X', shape=[1000, 784], dtype='float32') y = prog.global_block().create_var(name='Y', shape=[784, 100], dtype='float32') out = prog.global_block().create_var(name='Out', dtype='float32') prog.global_block().append_op(type="mul", inputs={ 'X': [x], 'Y': [y] }, outputs={'Out': [out]}) binary_str = prog.desc.serialize_to_string() prog_restored = Program.parse_from_string(binary_str) print(prog) print(prog_restored)
def load_vars(executor, dirname, main_program=None, vars=None, predicate=None): """ Load variables from directory by executor. :param executor: executor that save variable :param dirname: directory path :param main_program: program. If vars is None, then filter all variables in this program which fit `predicate`. Default default_main_program(). :param predicate: The Predicate describes a callable that returns a variable as a bool. If it returns true, the variables will be loaded. :param vars: variables need to be loaded. If specify vars, program & predicate will be ignored :return: None """ if vars is None: if main_program is None: main_program = default_main_program() if not isinstance(main_program, Program): raise TypeError("program's type should be Program") load_vars(executor, dirname=dirname, vars=filter(predicate, main_program.list_vars())) else: load_prog = Program() load_block = load_prog.global_block() for each_var in vars: assert isinstance(each_var, Variable) new_var = _clone_var_in_block_(load_block, each_var) load_block.append_op( type='load', inputs={}, outputs={"Out": [new_var]}, attrs={'file_path': os.path.join(dirname, new_var.name)}) executor.run(load_prog)
def check_output_with_place(self, place, atol): op_proto = OpProtoHolder.instance().get_op_proto(self.op_type) program = Program() block = program.global_block() inputs = append_input_output(block, op_proto, self.inputs, True) outputs = append_input_output(block, op_proto, self.outputs, False) op = block.append_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=self.attrs if hasattr(self, "attrs") else dict()) # infer variable type and infer shape in compile-time op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) fetch_list = [] for var_name, var in outputs.iteritems(): if var_name in self.outputs: if isinstance(var, list): for v in var: fetch_list.append(v) else: fetch_list.append(var) feed_map = self.feed_var(inputs, place) exe = Executor(place) outs = exe.run(program, feed=feed_map, fetch_list=fetch_list, return_numpy=False) for out_name, out_dup in Operator.get_op_outputs(self.op_type): if out_name not in self.outputs: continue def find_actual(target_name, fetch_list): found = [ i for i, var in enumerate(fetch_list) if var.name == target_name ] self.assertTrue( len(found) == 1, "Found {} {}".format( len(found), target_name)) return found[0] if out_dup: sub_out = self.outputs[out_name] if not isinstance(sub_out, list): raise AssertionError("sub_out type %s is not list", type(sub_out)) for sub_out_name, expect in sub_out: idx = find_actual(sub_out_name, fetch_list) actual = outs[idx] actual_t = np.array(actual) expect_t = expect[0] \ if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + sub_out_name + ") has diff at " + str(place)) if isinstance(expect, tuple): self.assertListEqual( actual.lod(), expect[1], "Output (" + sub_out_name + ") has different lod at " + str(place)) else: idx = find_actual(out_name, fetch_list) actual = outs[idx] actual_t = np.array(actual) expect = self.outputs[out_name] expect_t = expect[0] if isinstance(expect, tuple) else expect self.assertTrue( np.allclose( actual_t, expect_t, atol=atol), "Output (" + out_name + ") has diff at " + str(place)) if isinstance(expect, tuple): self.assertListEqual(actual.lod(), expect[1], "Output (" + out_name + ") has different lod at " + str(place))
def test_step_scopes(self): prog = Program() b = prog.current_block() var = b.create_var(name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES) self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)
def _get_gradient(self, input_to_check, place, output_names, no_grad_set): prog = Program() block = prog.global_block() inputs_with_np = { key: value for (key, value) in OpTest._create_var_descs_( block, getattr(self, 'inputs', {})) } outputs_with_np = { key: val for (key, val) in OpTest._create_var_descs_( block, getattr(self, 'outputs', {})) } inputs = { k: [item[0] for item in inputs_with_np[k]] for k in inputs_with_np } outputs = { k: [item[0] for item in outputs_with_np[k]] for k in outputs_with_np } op = block.append_op( type=self.op_type, inputs=inputs, outputs=outputs, attrs=getattr(self, 'attrs', {})) # infer variable type and infer shape in compile-time op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) mean_inputs = map(block.var, output_names) if len(mean_inputs) == 1: loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1]) op = block.append_op( inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean') op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) else: avg_sum = [] for cur_loss in mean_inputs: cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1]) op = block.append_op( inputs={"X": [cur_loss]}, outputs={"Out": [cur_avg_loss]}, type="mean") op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) avg_sum.append(cur_avg_loss) loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1]) op_sum = block.append_op( inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum') op_sum.desc.infer_var_type(block.desc) op_sum.desc.infer_shape(block.desc) loss = block.create_var(dtype=loss_sum.dtype, shape=[1]) op_loss = block.append_op( inputs={"X": loss_sum}, outputs={"Out": loss}, type='scale', attrs={'scale': 1.0 / float(len(avg_sum))}) op_loss.desc.infer_var_type(block.desc) op_loss.desc.infer_shape(block.desc) param_grad_list = append_backward_ops( loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set) feed_dict = { item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place) for p_name in inputs_with_np for item in inputs_with_np[p_name] } fetch_list = [g for p, g in param_grad_list] executor = Executor(place) return map( np.array, executor.run(prog, feed_dict, fetch_list, return_numpy=False))
def test_raw_api(self): kwargs = {'startup_program': Program(), 'main_program': Program()} image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) limit = layers.fill_constant_batch_size_like(input=label, dtype='int64', shape=[1], value=5.0, **kwargs) cond = layers.less_than(x=label, y=limit, **kwargs) true_image, false_image = layers.split_lod_tensor(input=image, mask=cond, **kwargs) true_out = layers.create_tensor(dtype='float32', **kwargs) true_cond = layers.ConditionalBlock([true_image], **kwargs) with true_cond.block(): hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) layers.assign(input=prob, output=true_out, **kwargs) false_out = layers.create_tensor(dtype='float32', **kwargs) false_cond = layers.ConditionalBlock([false_image], **kwargs) with false_cond.block(): hidden = layers.fc(input=false_image, size=200, act='tanh', **kwargs) prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) layers.assign(input=prob, output=false_out, **kwargs) prob = layers.merge_lod_tensor(in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs) loss = layers.cross_entropy(input=prob, label=label, **kwargs) avg_loss = layers.mean(x=loss, **kwargs) optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) optimizer.minimize(avg_loss, kwargs['startup_program']) train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=200) place = core.CPUPlace() exe = Executor(place) exe.run(kwargs['startup_program']) PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): x_data = np.array(map(lambda x: x[0], data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.expand_dims(y_data, axis=1) outs = exe.run(kwargs['main_program'], feed={ 'x': x_data, 'y': y_data }, fetch_list=[avg_loss]) print outs[0] if outs[0] < 1.0: return self.assertFalse(True)
def test_ifelse(self): kwargs = {'startup_program': Program(), 'main_program': Program()} image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) limit = layers.fill_constant_batch_size_like(input=label, dtype='int64', shape=[1], value=5.0, **kwargs) cond = layers.less_than(x=label, y=limit, **kwargs) ie = layers.IfElse(cond, **kwargs) with ie.true_block(): true_image = ie.input(image) hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) ie.output(prob) with ie.false_block(): false_image = ie.input(image) hidden = layers.fc(input=false_image, size=200, act='tanh', **kwargs) prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) ie.output(prob) prob = ie() loss = layers.cross_entropy(input=prob[0], label=label, **kwargs) avg_loss = layers.mean(x=loss, **kwargs) optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) optimizer.minimize(avg_loss, kwargs['startup_program']) train_reader = paddle.batch(paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), batch_size=200) place = core.CPUPlace() exe = Executor(place) exe.run(kwargs['startup_program']) PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): x_data = np.array(map(lambda x: x[0], data)).astype("float32") y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = y_data.reshape((y_data.shape[0], 1)) outs = exe.run(kwargs['main_program'], feed={ 'x': x_data, 'y': y_data }, fetch_list=[avg_loss]) print outs[0] if outs[0] < 1.0: return self.assertFalse(True)