def parse_new_rnn(): reset_parser() data = layer.data( name="word", type=data_type.dense_vector(dict_dim)) label = layer.data( name="label", type=data_type.dense_vector(label_dim)) emb = layer.embedding(input=data, size=word_dim) boot_layer = layer.data( name="boot", type=data_type.dense_vector(10)) boot_layer = layer.fc(name='boot_fc', input=boot_layer, size=10) def step(y, wid): z = layer.embedding(input=wid, size=word_dim) mem = layer.memory( name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = layer.fc(input=[y, z, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out out = layer.recurrent_group( name="rnn", step=step, input=[emb, data]) rep = layer.last_seq(input=out) prob = layer.fc(size=label_dim, input=rep, act=activation.Softmax(), bias_attr=True) cost = layer.classification_cost(input=prob, label=label) return str(layer.parse_network(cost))
def _attention_flow(self, h, u): bs = layer.recurrent_group(input=[h, layer.StaticInput(u)], step=self._h_step, reverse=False) b_weights = layer.mixed(act=Act.SequenceSoftmax(), bias_attr=False, input=layer.identity_projection(bs)) h_step_scaled = layer.scaling(input=h, weight=b_weights) h_step = layer.pooling(input=h_step_scaled, pooling_type=paddle.pooling.Sum()) h_expr = layer.expand(input=h_step, expand_as=h) u_expr = layer.recurrent_group(input=[h, layer.StaticInput(u)], step=self._u_step, reverse=False) g = self._beta(h, u_expr, h_expr) return g
def parse_new_rnn(): data = layer.data(name="word", type=data_type.dense_vector(dict_dim)) label = layer.data(name="label", type=data_type.dense_vector(label_dim)) emb = layer.embedding(input=data, size=word_dim) boot_layer = layer.data(name="boot", type=data_type.dense_vector(10)) boot_layer = layer.fc(name='boot_fc', input=boot_layer, size=10) def step(y, wid): z = layer.embedding(input=wid, size=word_dim) mem = layer.memory(name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = layer.fc(input=[y, z, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out out = layer.recurrent_group(name="rnn", step=step, input=[emb, data]) rep = layer.last_seq(input=out) prob = layer.fc(size=label_dim, input=rep, act=activation.Softmax(), bias_attr=True) cost = layer.classification_cost(input=prob, label=label) return str(layer.parse_network(cost))
def parse_new_rnn(): def new_step(y): mem = layer.memory(name="rnn_state", size=hidden_dim) out = layer.fc(input=[y, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out data = layer.data( name="word", type=data_type.integer_value(dict_dim)) embd = layer.embedding(input=data, size=word_dim) rnn_layer = layer.recurrent_group( name="rnn", step=new_step, input=embd) return str(layer.parse_network(rnn_layer))
def parse_new_rnn(): def new_step(y): mem = layer.memory(name="rnn_state", size=hidden_dim) out = layer.fc(input=[y, mem], size=hidden_dim, act=activation.Tanh(), bias_attr=True, name="rnn_state") return out data = layer.data(name="word", type=data_type.integer_value(dict_dim)) embd = layer.embedding(input=data, size=word_dim) rnn_layer = layer.recurrent_group(name="rnn", step=new_step, input=embd) return str(layer.parse_network(rnn_layer))
def recurrent_group(self, name, inputs, reverse=False): """ Implements the Match-LSTM layer in the paper. Args: name: the name prefix of the layers created by this method. inputs: the inputs takes by the _step method. reverse: True if the paragraph encoding is processed from right to left, otherwise the paragraph encoding is processed from left to right. Returns: The Match-LSTM layer's output of one direction. """ inputs.insert(0, name) seq_out = layer.recurrent_group(name=name, input=inputs, step=self._step, reverse=reverse) return seq_out