def load(self, path, shape_dict=None, **kwargs): # pylint: disable=C0415 import paddle paddle.enable_static() paddle.disable_signal_handler() if not os.path.exists(path): raise TVMCException("File {} is not exist.".format(path)) if not path.endswith(".pdmodel"): raise TVMCException( "Path of model file should be endwith suffixes '.pdmodel'.") prefix = "".join(path.strip().split(".")[:-1]) params_file_path = prefix + ".pdiparams" if not os.path.exists(params_file_path): raise TVMCException( "File {} is not exist.".format(params_file_path)) # pylint: disable=E1101 exe = paddle.static.Executor(paddle.CPUPlace()) prog, _, _ = paddle.static.load_inference_model(prefix, exe) return relay.frontend.from_paddle(prog, shape_dict=shape_dict, **kwargs)
def load(self, path, shape_dict=None, **kwargs): # pylint: disable=C0415 import paddle paddle.enable_static() paddle.disable_signal_handler() # pylint: disable=E1101 exe = paddle.static.Executor(paddle.CPUPlace()) prog, _, _ = paddle.static.load_inference_model(path, exe) return relay.frontend.from_paddle(prog, shape_dict=shape_dict, **kwargs)
# http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __version__ = '2.2.0' # Maybe dev is better import sys if 'datasets' in sys.modules.keys(): from paddlenlp.utils.log import logger logger.warning( "datasets module loaded before paddlenlp. " "This may cause PaddleNLP datasets to be unavalible in intranet.") from . import data from . import datasets from . import embeddings from . import ops from . import layers from . import metrics from . import seq2vec from . import transformers from . import utils from . import losses from . import experimental from .taskflow import Taskflow import paddle paddle.disable_signal_handler()