예제 #1
0
    def __call__(self, pbox, gbox, iou_weight=1.):
        x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
        x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
        cx = (x1 + x2) / 2
        cy = (y1 + y2) / 2
        w = x2 - x1
        h = y2 - y1

        cxg = (x1g + x2g) / 2
        cyg = (y1g + y2g) / 2
        wg = x2g - x1g
        hg = y2g - y1g

        x2 = paddle.maximum(x1, x2)
        y2 = paddle.maximum(y1, y2)

        # A and B
        xkis1 = paddle.maximum(x1, x1g)
        ykis1 = paddle.maximum(y1, y1g)
        xkis2 = paddle.minimum(x2, x2g)
        ykis2 = paddle.minimum(y2, y2g)

        # A or B
        xc1 = paddle.minimum(x1, x1g)
        yc1 = paddle.minimum(y1, y1g)
        xc2 = paddle.maximum(x2, x2g)
        yc2 = paddle.maximum(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * paddle.greater_than(
            xkis2, xkis1) * paddle.greater_than(ykis2, ykis1)
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (
            y2g - y1g) - intsctk + self.eps
        iouk = intsctk / unionk

        # DIOU term
        dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
        dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
        diou_term = (dist_intersection + self.eps) / (dist_union + self.eps)

        # CIOU term
        ciou_term = 0
        if self.use_complete_iou_loss:
            ar_gt = wg / hg
            ar_pred = w / h
            arctan = paddle.atan(ar_gt) - paddle.atan(ar_pred)
            ar_loss = 4. / np.pi / np.pi * arctan * arctan
            alpha = ar_loss / (1 - iouk + ar_loss + self.eps)
            alpha.stop_gradient = True
            ciou_term = alpha * ar_loss

        diou = paddle.mean((1 - iouk + ciou_term + diou_term) * iou_weight)

        return diou * self.loss_weight
예제 #2
0
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        #get cmc
        choosen_indices = paddle.argsort(similarities_matrix,
                                         axis=1,
                                         descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(keep_mask.astype('float32'),
                                            choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')
        real_query_num = paddle.sum(equal_flag, axis=1)
        real_query_num = paddle.sum(
            paddle.greater_than(real_query_num,
                                paddle.to_tensor(0.)).astype("float32"))

        acc_sum = paddle.cumsum(equal_flag, axis=1)
        mask = paddle.greater_than(acc_sum,
                                   paddle.to_tensor(0.)).astype("float32")
        all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()

        for k in self.topk:
            metric_dict["recall{}".format(k)] = all_cmc[k - 1]
        return metric_dict
예제 #3
0
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        choosen_indices = paddle.argsort(similarities_matrix,
                                         axis=1,
                                         descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(keep_mask.astype('float32'),
                                            choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

        acc_sum = paddle.cumsum(equal_flag, axis=1)
        div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
        precision = paddle.divide(acc_sum, div)

        #calc map
        precision_mask = paddle.multiply(equal_flag, precision)
        ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
                                                             axis=1)
        metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
        return metric_dict
예제 #4
0
    def forward(self, similarities_matrix, query_img_id, gallery_img_id,
                keep_mask):
        metric_dict = dict()

        choosen_indices = paddle.argsort(similarities_matrix,
                                         axis=1,
                                         descending=True)
        gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
        gallery_labels_transpose = paddle.broadcast_to(
            gallery_labels_transpose,
            shape=[
                choosen_indices.shape[0], gallery_labels_transpose.shape[1]
            ])
        choosen_label = paddle.index_sample(gallery_labels_transpose,
                                            choosen_indices)
        equal_flag = paddle.equal(choosen_label, query_img_id)
        if keep_mask is not None:
            keep_mask = paddle.index_sample(keep_mask.astype('float32'),
                                            choosen_indices)
            equal_flag = paddle.logical_and(equal_flag,
                                            keep_mask.astype('bool'))
        equal_flag = paddle.cast(equal_flag, 'float32')

        num_rel = paddle.sum(equal_flag, axis=1)
        num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
        num_rel_index = paddle.nonzero(num_rel.astype("int"))
        num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
        equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)

        #do accumulative sum
        div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
        minus = paddle.divide(equal_flag, div)
        auxilary = paddle.subtract(equal_flag, minus)
        hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
        all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
        mINP = paddle.mean(all_INP)
        metric_dict["mINP"] = mINP.numpy()[0]
        return metric_dict
예제 #5
0
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, fluid.framework.Block)
        block.program._use_lamb = True

        m = moment1 = self._get_accumulator(self._moment1_acc_str,
                                            param_and_grad[0])
        v = self._get_accumulator(self._moment2_acc_str, param_and_grad[0])
        beta_1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                               param_and_grad[0])
        beta_2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                               param_and_grad[0])

        beta_1 = layers.fill_constant(dtype='float32',
                                      shape=[1],
                                      value=self._beta1,
                                      name='lamb_beta_1')
        beta_2 = layers.fill_constant(dtype='float32',
                                      shape=[1],
                                      value=self._beta2,
                                      name='lamb_beta_2')
        epsilon = layers.fill_constant(dtype='float32',
                                       shape=[1],
                                       value=self._epsilon,
                                       name='epsilon')

        one = paddle.ones(shape=[1]).astype('float32')
        zero = paddle.zeros(shape=[1]).astype('float32')

        next_m = paddle.multiply(m, beta_1) + paddle.multiply(
            param_and_grad[1], one - beta_1)
        next_v = paddle.multiply(v, beta_2) + paddle.multiply(
            paddle.pow(param_and_grad[1], 2), one - beta_2)

        beta1_correction = one - beta_1_pow_acc
        beta2_correction = one - beta_2_pow_acc

        next_m_unbiased = next_m / beta1_correction
        next_v_unbiased = next_v / beta2_correction

        update = next_m_unbiased / (paddle.sqrt(next_v_unbiased) + epsilon)

        if self._exclude_from_weight_decay_fn is not None and self._exclude_from_weight_decay_fn(
                param_and_grad[0]):
            self._lamb_weight_decay = 0.0
        update += self._lamb_weight_decay * param_and_grad[0]

        w_norm = paddle.norm(param_and_grad[0], p=2)
        g_norm = paddle.norm(update, p=2)

        learning_rate = self._create_param_lr(param_and_grad)

        ratio = paddle.where(
            paddle.greater_than(w_norm, zero),
            paddle.where(paddle.greater_than(g_norm, zero), (w_norm / g_norm),
                         one), one)
        update_with_lr = ratio * learning_rate * update
        next_param = param_and_grad[0] - update_with_lr

        beta_1_pow_acc *= beta_1
        beta_2_pow_acc *= beta_2

        paddle.assign(next_m, m)
        paddle.assign(next_v, v)
        paddle.assign(next_param, param_and_grad[0])

        return None
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size, 6)
        self.assertEqual(x.numel(), 6)
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        self.assertTrue(
            np.array_equal(x.asinh().numpy(),
                           paddle.asinh(x).numpy()))
        ### acosh(x) = nan, need to change input
        t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype)
        t = paddle.to_tensor(t_np)
        self.assertTrue(
            np.array_equal(t.acosh().numpy(),
                           paddle.acosh(t).numpy()))
        self.assertTrue(
            np.array_equal(x.atanh().numpy(),
                           paddle.atanh(x).numpy()))
        d = paddle.to_tensor([[1.2285208, 1.3491015, 1.4899898],
                              [1.30058, 1.0688717, 1.4928783],
                              [1.0958099, 1.3724753, 1.8926544]])
        d = d.matmul(d.t())
        # ROCM not support cholesky
        if not fluid.core.is_compiled_with_rocm():
            self.assertTrue(
                np.array_equal(d.cholesky().numpy(),
                               paddle.cholesky(d).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(
                m.unique(return_counts=True)[1],
                paddle.unique(m, return_counts=True)[1]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(x.divide(y).numpy(),
                           paddle.divide(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        a = paddle.to_tensor([[1, 2], [3, 4]])
        b = paddle.to_tensor([[4, 3], [2, 1]])
        self.assertTrue(
            np.array_equal(
                x.where(a, b).numpy(),
                paddle.where(x, a, b).numpy()))

        x_np = np.random.randn(3, 6, 9, 7)
        x = paddle.to_tensor(x_np)
        x_T = x.T
        self.assertTrue(x_T.shape, [7, 9, 6, 3])
        self.assertTrue(np.array_equal(x_T.numpy(), x_np.T))

        self.assertTrue(inspect.ismethod(a.dot))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.multiplex))
        self.assertTrue(inspect.ismethod(a.prod))
        self.assertTrue(inspect.ismethod(a.scale))
        self.assertTrue(inspect.ismethod(a.stanh))
        self.assertTrue(inspect.ismethod(a.add_n))
        self.assertTrue(inspect.ismethod(a.max))
        self.assertTrue(inspect.ismethod(a.maximum))
        self.assertTrue(inspect.ismethod(a.min))
        self.assertTrue(inspect.ismethod(a.minimum))
        self.assertTrue(inspect.ismethod(a.floor_divide))
        self.assertTrue(inspect.ismethod(a.remainder))
        self.assertTrue(inspect.ismethod(a.floor_mod))
        self.assertTrue(inspect.ismethod(a.multiply))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.inverse))
        self.assertTrue(inspect.ismethod(a.log1p))
        self.assertTrue(inspect.ismethod(a.erf))
        self.assertTrue(inspect.ismethod(a.addmm))
        self.assertTrue(inspect.ismethod(a.clip))
        self.assertTrue(inspect.ismethod(a.trace))
        self.assertTrue(inspect.ismethod(a.kron))
        self.assertTrue(inspect.ismethod(a.isinf))
        self.assertTrue(inspect.ismethod(a.isnan))
        self.assertTrue(inspect.ismethod(a.concat))
        self.assertTrue(inspect.ismethod(a.broadcast_to))
        self.assertTrue(inspect.ismethod(a.scatter_nd_add))
        self.assertTrue(inspect.ismethod(a.scatter_nd))
        self.assertTrue(inspect.ismethod(a.shard_index))
        self.assertTrue(inspect.ismethod(a.chunk))
        self.assertTrue(inspect.ismethod(a.stack))
        self.assertTrue(inspect.ismethod(a.strided_slice))
        self.assertTrue(inspect.ismethod(a.unsqueeze))
        self.assertTrue(inspect.ismethod(a.unstack))
        self.assertTrue(inspect.ismethod(a.argmax))
        self.assertTrue(inspect.ismethod(a.argmin))
        self.assertTrue(inspect.ismethod(a.argsort))
        self.assertTrue(inspect.ismethod(a.masked_select))
        self.assertTrue(inspect.ismethod(a.topk))
        self.assertTrue(inspect.ismethod(a.index_select))
        self.assertTrue(inspect.ismethod(a.nonzero))
        self.assertTrue(inspect.ismethod(a.sort))
        self.assertTrue(inspect.ismethod(a.index_sample))
        self.assertTrue(inspect.ismethod(a.mean))
        self.assertTrue(inspect.ismethod(a.std))
        self.assertTrue(inspect.ismethod(a.numel))
예제 #7
0
 def forward(self, inputs, inputs_):
     """
     forward
     """
     x = paddle.greater_than(inputs, inputs_)
     return x
예제 #8
0
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size(), [2, 3])
        self.assertTrue(
            np.array_equal(x.sigmoid().numpy(),
                           fluid.layers.sigmoid(x).numpy()))
        self.assertTrue(
            np.array_equal(x.logsigmoid().numpy(),
                           fluid.layers.logsigmoid(x).numpy()))
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh_shrink().numpy(),
                           fluid.layers.tanh_shrink(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softplus().numpy(),
                           fluid.layers.softplus(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softsign().numpy(),
                           fluid.layers.softsign(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        m = paddle.to_tensor(np.random.uniform(1, 2, [3, 3]), 'float32')
        m = m.matmul(m.t())
        self.assertTrue(
            np.array_equal(m.cholesky().numpy(),
                           paddle.cholesky(m).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(m.unique_with_counts()[2],
                           paddle.unique_with_counts(m)[2]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(x.reduce_all().numpy(),
                           paddle.reduce_all(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reduce_any().numpy(),
                           paddle.reduce_any(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
예제 #9
0
    def get_seg_single(self, cate_preds, seg_preds, kernel_preds, featmap_size,
                       im_info):

        im_scale = im_info[2]
        h = fluid.layers.cast(im_info[0], 'int32')
        w = fluid.layers.cast(im_info[1], 'int32')
        upsampled_size_out = (featmap_size[0] * 4, featmap_size[1] * 4)

        inds = fluid.layers.where(cate_preds > self.score_threshold)
        cate_preds = fluid.layers.reshape(cate_preds, shape=[-1])
        # Prevent empty and increase fake data
        ind_a = fluid.layers.cast(fluid.layers.shape(kernel_preds)[0], 'int64')
        ind_b = fluid.layers.zeros(shape=[1], dtype='int64')
        inds_end = fluid.layers.unsqueeze(fluid.layers.concat([ind_a, ind_b]),
                                          0)
        inds = fluid.layers.concat([inds, inds_end])
        kernel_preds_end = fluid.layers.ones(
            shape=[1, self.kernel_out_channels], dtype='float32')
        kernel_preds = fluid.layers.concat([kernel_preds, kernel_preds_end])
        cate_preds = fluid.layers.concat(
            [cate_preds,
             fluid.layers.zeros(shape=[1], dtype='float32')])

        # cate_labels & kernel_preds
        cate_labels = inds[:, 1]
        kernel_preds = fluid.layers.gather(kernel_preds, index=inds[:, 0])
        cate_score_idx = fluid.layers.elementwise_add(
            inds[:, 0] * self.cate_out_channels, cate_labels)
        cate_scores = fluid.layers.gather(cate_preds, index=cate_score_idx)

        size_trans = np.power(self.seg_num_grids, 2)
        strides = []
        for _ind in range(len(self.segm_strides)):
            strides.append(
                fluid.layers.fill_constant(shape=[int(size_trans[_ind])],
                                           dtype="float32",
                                           value=self.segm_strides[_ind]))
        strides = fluid.layers.concat(strides)
        strides = fluid.layers.gather(strides, index=inds[:, 0])

        # mask encoding.
        kernel_preds = fluid.layers.unsqueeze(kernel_preds, [2, 3])
        seg_preds = paddle.nn.functional.conv2d(seg_preds, kernel_preds)
        seg_preds = fluid.layers.sigmoid(fluid.layers.squeeze(seg_preds, [0]))
        seg_masks = seg_preds > self.mask_threshold
        seg_masks = fluid.layers.cast(seg_masks, 'float32')
        sum_masks = fluid.layers.reduce_sum(seg_masks, dim=[1, 2])

        keep = fluid.layers.where(paddle.greater_than(sum_masks, strides))
        keep = fluid.layers.squeeze(keep, axes=[1])
        # Prevent empty and increase fake data
        keep_other = fluid.layers.concat([
            keep,
            fluid.layers.cast(fluid.layers.shape(sum_masks)[0] - 1, 'int64')
        ])
        keep_scores = fluid.layers.concat([
            keep,
            fluid.layers.cast(fluid.layers.shape(sum_masks)[0], 'int64')
        ])
        cate_scores_end = fluid.layers.zeros(shape=[1], dtype='float32')
        cate_scores = fluid.layers.concat([cate_scores, cate_scores_end])

        seg_masks = fluid.layers.gather(seg_masks, index=keep_other)
        seg_preds = fluid.layers.gather(seg_preds, index=keep_other)
        sum_masks = fluid.layers.gather(sum_masks, index=keep_other)
        cate_labels = fluid.layers.gather(cate_labels, index=keep_other)
        cate_scores = fluid.layers.gather(cate_scores, index=keep_scores)

        # mask scoring.
        seg_mul = fluid.layers.cast(paddle.multiply(seg_preds, seg_masks),
                                    'float32')
        seg_scores = paddle.divide(paddle.sum(seg_mul, axis=[1, 2]), sum_masks)
        cate_scores = paddle.multiply(cate_scores, seg_scores)

        # Matrix NMS
        seg_preds, cate_scores, cate_labels = self.mask_nms(
            seg_preds,
            seg_masks,
            cate_labels,
            cate_scores,
            sum_masks=sum_masks)

        ori_shape = im_info[:2] / im_scale + 0.5
        ori_shape = fluid.layers.cast(ori_shape, 'int32')
        seg_preds = paddle.nn.functional.interpolate(
            fluid.layers.unsqueeze(seg_preds, 0),
            size=upsampled_size_out,
            mode='bilinear',
            align_corners=False,
            align_mode=0)[:, :, :h, :w]
        seg_masks = fluid.layers.squeeze(paddle.nn.functional.interpolate(
            seg_preds,
            size=ori_shape[:2],
            mode='bilinear',
            align_corners=False,
            align_mode=0),
                                         axes=[0])
        # TODO: convert uint8
        seg_masks = fluid.layers.cast(seg_masks > self.mask_threshold, 'int32')
        return seg_masks, cate_labels, cate_scores