예제 #1
0
    def test_dygraph(self):
        with fluid.dygraph.guard():
            inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
            inputs = fluid.dygraph.to_variable(inputs_np)
            actual = paddle.histogram(inputs, bins=5, min=1, max=5)
            expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
            self.assertTrue(
                (actual.numpy() == expected).all(),
                msg='histogram output is wrong, out =' + str(actual.numpy()))

            with _test_eager_guard():
                inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
                inputs = paddle.to_tensor(inputs_np)
                actual = paddle.histogram(inputs, bins=5, min=1, max=5)
                self.assertTrue((actual.numpy() == expected).all(),
                                msg='histogram output is wrong, out =' +
                                str(actual.numpy()))
예제 #2
0
    def forward(self, logit, label):
        if logit.ndim == 4:
            logit = logit.squeeze(2).squeeze(3)
        assert logit.ndim == 2, "The shape of logit should be [N, C, 1, 1] or [N, C], but the logit dim is  {}.".format(
            logit.ndim)

        batch_size, num_classes = paddle.shape(logit)
        se_label = paddle.zeros([batch_size, num_classes])
        for i in range(batch_size):
            hist = paddle.histogram(label[i],
                                    bins=num_classes,
                                    min=0,
                                    max=num_classes - 1)
            hist = hist.astype('float32') / hist.sum().astype('float32')
            se_label[i] = (hist > 0).astype('float32')
        loss = F.binary_cross_entropy_with_logits(logit, se_label)
        return loss
예제 #3
0
 def test_static_graph(self):
     startup_program = fluid.Program()
     train_program = fluid.Program()
     with fluid.program_guard(train_program, startup_program):
         inputs = fluid.data(name='input', dtype='int64', shape=[2, 3])
         output = paddle.histogram(inputs, bins=5, min=1, max=5)
         place = fluid.CPUPlace()
         if fluid.core.is_compiled_with_cuda():
             place = fluid.CUDAPlace(0)
         exe = fluid.Executor(place)
         exe.run(startup_program)
         img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64)
         res = exe.run(train_program,
                       feed={'input': img},
                       fetch_list=[output])
         actual = np.array(res[0])
         expected = np.array([0, 3, 0, 2, 1]).astype(np.int64)
         self.assertTrue(
             (actual == expected).all(),
             msg='histogram output is wrong, out =' + str(actual))
예제 #4
0
 def net_func():
     input_value = paddle.fluid.layers.fill_constant(shape=[3, 4],
                                                     dtype='float32',
                                                     value=3.0)
     paddle.histogram(input=input_value, bins=1, min=5, max=1)
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size, 6)
        self.assertEqual(x.numel(), 6)
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        self.assertTrue(
            np.array_equal(x.asinh().numpy(),
                           paddle.asinh(x).numpy()))
        ### acosh(x) = nan, need to change input
        t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype)
        t = paddle.to_tensor(t_np)
        self.assertTrue(
            np.array_equal(t.acosh().numpy(),
                           paddle.acosh(t).numpy()))
        self.assertTrue(
            np.array_equal(x.atanh().numpy(),
                           paddle.atanh(x).numpy()))
        d = paddle.to_tensor([[1.2285208, 1.3491015, 1.4899898],
                              [1.30058, 1.0688717, 1.4928783],
                              [1.0958099, 1.3724753, 1.8926544]])
        d = d.matmul(d.t())
        # ROCM not support cholesky
        if not fluid.core.is_compiled_with_rocm():
            self.assertTrue(
                np.array_equal(d.cholesky().numpy(),
                               paddle.cholesky(d).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(
                m.unique(return_counts=True)[1],
                paddle.unique(m, return_counts=True)[1]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(x.divide(y).numpy(),
                           paddle.divide(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        a = paddle.to_tensor([[1, 2], [3, 4]])
        b = paddle.to_tensor([[4, 3], [2, 1]])
        self.assertTrue(
            np.array_equal(
                x.where(a, b).numpy(),
                paddle.where(x, a, b).numpy()))

        x_np = np.random.randn(3, 6, 9, 7)
        x = paddle.to_tensor(x_np)
        x_T = x.T
        self.assertTrue(x_T.shape, [7, 9, 6, 3])
        self.assertTrue(np.array_equal(x_T.numpy(), x_np.T))

        self.assertTrue(inspect.ismethod(a.dot))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.multiplex))
        self.assertTrue(inspect.ismethod(a.prod))
        self.assertTrue(inspect.ismethod(a.scale))
        self.assertTrue(inspect.ismethod(a.stanh))
        self.assertTrue(inspect.ismethod(a.add_n))
        self.assertTrue(inspect.ismethod(a.max))
        self.assertTrue(inspect.ismethod(a.maximum))
        self.assertTrue(inspect.ismethod(a.min))
        self.assertTrue(inspect.ismethod(a.minimum))
        self.assertTrue(inspect.ismethod(a.floor_divide))
        self.assertTrue(inspect.ismethod(a.remainder))
        self.assertTrue(inspect.ismethod(a.floor_mod))
        self.assertTrue(inspect.ismethod(a.multiply))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.inverse))
        self.assertTrue(inspect.ismethod(a.log1p))
        self.assertTrue(inspect.ismethod(a.erf))
        self.assertTrue(inspect.ismethod(a.addmm))
        self.assertTrue(inspect.ismethod(a.clip))
        self.assertTrue(inspect.ismethod(a.trace))
        self.assertTrue(inspect.ismethod(a.kron))
        self.assertTrue(inspect.ismethod(a.isinf))
        self.assertTrue(inspect.ismethod(a.isnan))
        self.assertTrue(inspect.ismethod(a.concat))
        self.assertTrue(inspect.ismethod(a.broadcast_to))
        self.assertTrue(inspect.ismethod(a.scatter_nd_add))
        self.assertTrue(inspect.ismethod(a.scatter_nd))
        self.assertTrue(inspect.ismethod(a.shard_index))
        self.assertTrue(inspect.ismethod(a.chunk))
        self.assertTrue(inspect.ismethod(a.stack))
        self.assertTrue(inspect.ismethod(a.strided_slice))
        self.assertTrue(inspect.ismethod(a.unsqueeze))
        self.assertTrue(inspect.ismethod(a.unstack))
        self.assertTrue(inspect.ismethod(a.argmax))
        self.assertTrue(inspect.ismethod(a.argmin))
        self.assertTrue(inspect.ismethod(a.argsort))
        self.assertTrue(inspect.ismethod(a.masked_select))
        self.assertTrue(inspect.ismethod(a.topk))
        self.assertTrue(inspect.ismethod(a.index_select))
        self.assertTrue(inspect.ismethod(a.nonzero))
        self.assertTrue(inspect.ismethod(a.sort))
        self.assertTrue(inspect.ismethod(a.index_sample))
        self.assertTrue(inspect.ismethod(a.mean))
        self.assertTrue(inspect.ismethod(a.std))
        self.assertTrue(inspect.ismethod(a.numel))
예제 #6
0
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size(), [2, 3])
        self.assertTrue(
            np.array_equal(x.sigmoid().numpy(),
                           fluid.layers.sigmoid(x).numpy()))
        self.assertTrue(
            np.array_equal(x.logsigmoid().numpy(),
                           fluid.layers.logsigmoid(x).numpy()))
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh_shrink().numpy(),
                           fluid.layers.tanh_shrink(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softplus().numpy(),
                           fluid.layers.softplus(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softsign().numpy(),
                           fluid.layers.softsign(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        m = paddle.to_tensor(np.random.uniform(1, 2, [3, 3]), 'float32')
        m = m.matmul(m.t())
        self.assertTrue(
            np.array_equal(m.cholesky().numpy(),
                           paddle.cholesky(m).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(m.unique_with_counts()[2],
                           paddle.unique_with_counts(m)[2]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(x.reduce_all().numpy(),
                           paddle.reduce_all(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reduce_any().numpy(),
                           paddle.reduce_any(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))