def slotdataloader(readerclass, train, yaml_file, context): if train == "TRAIN": reader_name = "SlotReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "SlotReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] if context["engine"] == EngineMode.LOCAL_CLUSTER: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) print("file_list: {}".format(files)) sparse = get_global_env("sparse_slots", "#", namespace) if sparse == "": sparse = "#" dense = get_global_env("dense_slots", "#", namespace) if dense == "": dense = "#" padding = get_global_env("padding", 0, namespace) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader
def _get_dataset(self, dataset_name, context): name = "dataset." + dataset_name + "." reader_class = envs.get_global_env(name + "data_converter") reader_class_name = envs.get_global_env(name + "reader_class_name", "Reader") abs_dir = os.path.dirname(os.path.abspath(__file__)) reader = os.path.join(abs_dir, '../../utils', 'dataset_instance.py') sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip() dense_slots = envs.get_global_env(name + "dense_slots", "").strip() if sparse_slots == "" and dense_slots == "": pipe_cmd = "python {} {} {} {}".format(reader, reader_class, reader_class_name, context["config_yaml"]) else: if sparse_slots == "": sparse_slots = "?" if dense_slots == "": dense_slots = "?" padding = envs.get_global_env(name + "padding", 0) pipe_cmd = "python {} {} {} {} {} {} {} {}".format( reader, "slot", "slot", context["config_yaml"], "fake", sparse_slots.replace(" ", "?"), dense_slots.replace(" ", "?"), str(padding)) batch_size = envs.get_global_env(name + "batch_size") dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(batch_size) dataset.set_pipe_command(pipe_cmd) train_data_path = envs.get_global_env(name + "data_path") file_list = [ os.path.join(train_data_path, x) for x in os.listdir(train_data_path) ] if context["engine"] == EngineMode.LOCAL_CLUSTER: file_list = split_files(file_list, context["fleet"].worker_index(), context["fleet"].worker_num()) print("File_list: {}".format(file_list)) dataset.set_filelist(file_list) for model_dict in context["phases"]: if model_dict["dataset_name"] == dataset_name: model = context["model"][model_dict["name"]]["model"] thread_num = int(model_dict["thread_num"]) dataset.set_thread(thread_num) if context["is_infer"]: inputs = model._infer_data_var else: inputs = model._data_var dataset.set_use_var(inputs) break return dataset
def dataloader_by_name(readerclass, dataset_name, yaml_file, context, reader_class_name="Reader"): reader_class = lazy_instance_by_fliename(readerclass, reader_class_name) name = "dataset." + dataset_name + "." data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] if context["engine"] == EngineMode.LOCAL_CLUSTER: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) print("file_list : {}".format(files)) reader = reader_class(yaml_file) reader.init() def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader
def _get_dataset(self, dataset_name, context): name = "dataset." + dataset_name + "." reader_class = envs.get_global_env(name + "data_converter") reader_class_name = envs.get_global_env(name + "reader_class_name", "Reader") abs_dir = os.path.dirname(os.path.abspath(__file__)) reader = os.path.join(abs_dir, '../../utils', 'dataset_instance.py') sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip() dense_slots = envs.get_global_env(name + "dense_slots", "").strip() if sparse_slots == "" and dense_slots == "": pipe_cmd = "python {} {} {} {}".format(reader, reader_class, reader_class_name, context["config_yaml"]) else: if sparse_slots == "": sparse_slots = "?" if dense_slots == "": dense_slots = "?" padding = envs.get_global_env(name + "padding", 0) pipe_cmd = "python {} {} {} {} {} {} {} {}".format( reader, "slot", "slot", context["config_yaml"], "fake", sparse_slots.replace(" ", "?"), dense_slots.replace(" ", "?"), str(padding)) batch_size = envs.get_global_env(name + "batch_size") dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(batch_size) dataset.set_pipe_command(pipe_cmd) train_data_path = envs.get_global_env(name + "data_path") hidden_file_list, file_list = check_filelist( hidden_file_list=[], data_file_list=[], train_data_path=train_data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}" .format(hidden_file_list)) file_list.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount afs, split files for every node need_split_files = True if need_split_files: file_list = split_files(file_list, context["fleet"].worker_index(), context["fleet"].worker_num()) print("File_list: {}".format(file_list)) dataset.set_filelist(file_list) for model_dict in context["phases"]: if model_dict["dataset_name"] == dataset_name: model = context["model"][model_dict["name"]]["model"] thread_num = int(model_dict["thread_num"]) dataset.set_thread(thread_num) if context["is_infer"]: inputs = model._infer_data_var else: inputs = model._data_var dataset.set_use_var(inputs) break return dataset
def dataloader_by_name(readerclass, dataset_name, yaml_file, context, reader_class_name="Reader"): reader_class = lazy_instance_by_fliename(readerclass, reader_class_name) name = "dataset." + dataset_name + "." data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist(hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}" .format(hidden_file_list)) files.sort() # for local cluster: discard some files if files cannot be divided equally between GPUs if (context["device"] == "GPU") and "PADDLEREC_GPU_NUMS" in os.environ: selected_gpu_nums = int(os.getenv("PADDLEREC_GPU_NUMS")) discard_file_nums = len(files) % selected_gpu_nums if (discard_file_nums != 0): warnings.warn( "Because files cannot be divided equally between GPUs,discard these files:{}" .format(files[-discard_file_nums:])) files = files[:len(files) - discard_file_nums] need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True print("need_split_files: {}".format(need_split_files)) if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) context["file_list"] = files reader = reader_class(yaml_file) reader.init() def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() if hasattr(reader, "batch_tensor_creator"): return reader.batch_tensor_creator(gen_reader) return gen_reader
def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context): name = "dataset." + dataset_name + "." reader_name = "SlotReader" data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist(hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}" .format(hidden_file_list)) files.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) sparse = get_global_env(name + "sparse_slots", "#") if sparse == "": sparse = "#" dense = get_global_env(name + "dense_slots", "#") if dense == "": dense = "#" padding = get_global_env(name + "padding", 0) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader