def train_dali(cfg, weights=None, parallel=True): """Train model entry Args: cfg (dict): configuration. weights (str): weights path for finetuning. parallel (bool): Whether multi-cards training. Default: True. """ logger = get_logger("paddlevideo") batch_size = cfg.DALI_LOADER.get('batch_size', 8) places = paddle.set_device('gpu') model_name = cfg.model_name output_dir = cfg.get("output_dir", f"./output/{model_name}") mkdir(output_dir) # 1. Construct model model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) # 2. Construct dali dataloader train_loader = TSN_Dali_loader(cfg.DALI_LOADER).build_dali_reader() # 3. Construct solver. lr = build_lr(cfg.OPTIMIZER.learning_rate, None) optimizer = build_optimizer(cfg.OPTIMIZER, lr, parameter_list=model.parameters()) # Resume resume_epoch = cfg.get("resume_epoch", 0) if resume_epoch: filename = osp.join(output_dir, model_name + f"_epoch_{resume_epoch:05d}") resume_model_dict = load(filename + '.pdparams') resume_opt_dict = load(filename + '.pdopt') model.set_state_dict(resume_model_dict) optimizer.set_state_dict(resume_opt_dict) # Finetune: if weights: assert resume_epoch == 0, f"Conflict occurs when finetuning, please switch resume function off by setting resume_epoch to 0 or not indicating it." model_dict = load(weights) model.set_state_dict(model_dict) # 4. Train Model for epoch in range(0, cfg.epochs): if epoch < resume_epoch: logger.info( f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... " ) continue model.train() record_list = build_record(cfg.MODEL) tic = time.time() for i, data in enumerate(train_loader): data = get_input_data(data) record_list['reader_time'].update(time.time() - tic) # 4.1 forward if parallel: outputs = model._layers.train_step(data) ## required for DataParallel, will remove in next version model._reducer.prepare_for_backward( list(model._find_varbase(outputs))) else: outputs = model.train_step(data) # 4.2 backward avg_loss = outputs['loss'] avg_loss.backward() # 4.3 minimize optimizer.step() optimizer.clear_grad() # log record record_list['lr'].update(optimizer._global_learning_rate(), batch_size) for name, value in outputs.items(): record_list[name].update(value, batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "train", ips) # learning rate iter step if cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() # learning rate epoch step if not cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "train", ips) # use precise bn to improve acc if cfg.get("PRECISEBN") and (epoch % cfg.PRECISEBN.preciseBN_interval == 0 or epoch == cfg.epochs - 1): do_preciseBN( model, train_loader, parallel, min(cfg.PRECISEBN.num_iters_preciseBN, len(train_loader))) # 5. Save model and optimizer if epoch % cfg.get("save_interval", 1) == 0 or epoch == cfg.epochs - 1: save( optimizer.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdopt")) save( model.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdparams")) logger.info(f'training {model_name} finished')
def train_model_multigrid(cfg, world_size=1, validate=True): """Train model entry Args: cfg (dict): configuration. parallel (bool): Whether multi-card training. Default: Treu validate (bool): Whether to do evaluation. Default: False. """ # Init multigrid. multigrid = None if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE: multigrid = MultigridSchedule() cfg = multigrid.init_multigrid(cfg) if cfg.MULTIGRID.LONG_CYCLE: cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0) multi_save_epoch = [i[-1] - 1 for i in multigrid.schedule] parallel = world_size != 1 logger = get_logger("paddlevideo") batch_size = cfg.DATASET.get('batch_size', 2) places = paddle.set_device('gpu') model_name = cfg.model_name output_dir = cfg.get("output_dir", f"./output/{model_name}") mkdir(output_dir) local_rank = dist.ParallelEnv().local_rank precise_bn = cfg.get("PRECISEBN") num_iters_precise_bn = cfg.PRECISEBN.num_iters_preciseBN # 1. Construct model model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) # 2. Construct dataloader train_loader, valid_loader, precise_bn_loader = \ construct_loader(cfg, places, validate, precise_bn, num_iters_precise_bn, world_size, ) # 3. Construct optimizer lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader)) optimizer = build_optimizer(cfg.OPTIMIZER, lr, parameter_list=model.parameters()) # Resume resume_epoch = cfg.get("resume_epoch", 0) if resume_epoch: filename = osp.join( output_dir, model_name + str(local_rank) + '_' + f"{resume_epoch:05d}") subn_load(model, filename, optimizer) # 4. Train Model best = 0. total_epochs = int(cfg.epochs * cfg.MULTIGRID.epoch_factor) for epoch in range(total_epochs): if epoch < resume_epoch: logger.info( f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... " ) continue if cfg.MULTIGRID.LONG_CYCLE: cfg, changed = multigrid.update_long_cycle(cfg, epoch) if changed: logger.info("====== Rebuild model/optimizer/loader =====") ( model, lr, optimizer, train_loader, valid_loader, precise_bn_loader, ) = build_trainer(cfg, places, parallel, validate, precise_bn, num_iters_precise_bn, world_size) #load checkpoint after re-build model if epoch != 0: #epoch no need to -1, haved add 1 when save filename = osp.join( output_dir, model_name + str(local_rank) + '_' + f"{(epoch):05d}") subn_load(model, filename, optimizer) #update lr last epoch, not to use saved params lr.last_epoch = epoch lr.step(rebuild=True) model.train() record_list = build_record(cfg.MODEL) tic = time.time() for i, data in enumerate(train_loader): record_list['reader_time'].update(time.time() - tic) # 4.1 forward if parallel: outputs = model._layers.train_step(data) ## required for DataParallel, will remove in next version model._reducer.prepare_for_backward( list(model._find_varbase(outputs))) else: outputs = model.train_step(data) # 4.2 backward avg_loss = outputs['loss'] avg_loss.backward() # 4.3 minimize optimizer.step() optimizer.clear_grad() # log record record_list['lr'].update( optimizer._global_learning_rate().numpy()[0], batch_size) for name, value in outputs.items(): record_list[name].update(value.numpy()[0], batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, total_epochs, "train", ips) # learning rate iter step if cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() # learning rate epoch step if not cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "train", ips) def evaluate(best): model.eval() record_list = build_record(cfg.MODEL) record_list.pop('lr') tic = time.time() for i, data in enumerate(valid_loader): if parallel: outputs = model._layers.val_step(data) else: outputs = model.val_step(data) # log_record for name, value in outputs.items(): record_list[name].update(value.numpy()[0], batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, total_epochs, "val", ips) ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "val", ips) best_flag = False if record_list.get('top1') and record_list['top1'].avg > best: best = record_list['top1'].avg best_flag = True return best, best_flag # use precise bn to improve acc if is_eval_epoch(cfg, epoch, total_epochs, multigrid.schedule): logger.info(f"do precise BN in {epoch+1} ...") do_preciseBN(model, precise_bn_loader, parallel, min(num_iters_precise_bn, len(precise_bn_loader))) # aggregate sub_BN stats logger.info("Aggregate sub_BatchNorm stats...") aggregate_sub_bn_stats(model) # 5. Validation if is_eval_epoch(cfg, epoch, total_epochs, multigrid.schedule): logger.info(f"eval in {epoch+1} ...") with paddle.fluid.dygraph.no_grad(): best, save_best_flag = evaluate(best) # save best if save_best_flag: save(optimizer.state_dict(), osp.join(output_dir, model_name + "_best.pdopt")) save(model.state_dict(), osp.join(output_dir, model_name + "_best.pdparams")) logger.info( f"Already save the best model (top1 acc){int(best * 10000) / 10000}" ) # 6. Save model and optimizer if is_eval_epoch( cfg, epoch, total_epochs, multigrid.schedule) or epoch % cfg.get( "save_interval", 10) == 0 or epoch in multi_save_epoch: logger.info("[Save parameters] ======") subn_save(output_dir, model_name + str(local_rank) + '_', epoch + 1, model, optimizer) logger.info(f'training {model_name} finished')
def train_model(cfg, parallel=True, validate=True): """Train model entry Args: cfg (dict): configuration. parallel (bool): Whether multi-card training. Default: True. validate (bool): Whether to do evaluation. Default: False. """ head_name = cfg.MODEL.head.name logger = get_logger("paddlevideo") #single card batch size batch_size = cfg.DATASET.get('batch_size', 8) valid_batch_size = cfg.DATASET.get('valid_batch_size', batch_size) places = paddle.set_device('gpu') # default num worker: 0, which means no subprocess will be created num_workers = cfg.DATASET.get('num_workers', 0) model_name = cfg.model_name output_dir = cfg.get("output_dir", f"./output/{model_name}") mkdir(output_dir) # 1. Construct model model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) train_shuffle = True valid_shuffle = False if "shuffle" in cfg.DATASET.train: train_shuffle = cfg.DATASET.train.pop("shuffle") if "shuffle" in cfg.DATASET.valid: valid_shuffle = cfg.DATASET.valid.pop("shuffle") # 2. Construct dataset and dataloader train_dataset = build_dataset((cfg.DATASET.train, cfg.PIPELINE.train)) train_dataloader_setting = dict(batch_size=batch_size, num_workers=num_workers, collate_fn_cfg=cfg.get('MIX', None), places=places, shuffle=train_shuffle) train_loader = build_dataloader(train_dataset, **train_dataloader_setting) if validate: valid_dataset = build_dataset((cfg.DATASET.valid, cfg.PIPELINE.valid)) validate_dataloader_setting = dict(batch_size=valid_batch_size, num_workers=num_workers, places=places, drop_last=False, shuffle=valid_shuffle) valid_loader = build_dataloader(valid_dataset, **validate_dataloader_setting) # 3. Construct learning rate schedule and optimizer lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader)) optimizer = build_optimizer(cfg.OPTIMIZER, lr, parameter_list=model.parameters()) # Resume resume_epoch = cfg.get("resume_epoch", 0) if resume_epoch: filename = osp.join(output_dir, model_name + f"_epoch_{resume_epoch:05d}") resume_model_dict = load(filename + '.pdparams') resume_opt_dict = load(filename + '.pdopt') model.set_state_dict(resume_model_dict) optimizer.set_state_dict(resume_opt_dict) # 4. Train Model best = 0. for epoch in range(0, cfg.epochs): if epoch < resume_epoch: logger.info( f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... " ) continue model.train() record_list = build_record(cfg.MODEL) tic = time.time() for i, data in enumerate(train_loader): record_list['reader_time'].update(time.time() - tic) # 4.1 forward if parallel: outputs = model._layers.train_step(data) else: outputs = model.train_step(data) # 4.2 backward avg_loss = outputs['loss'] avg_loss.backward() # 4.3 minimize optimizer.step() optimizer.clear_grad() # log record record_list['lr'].update( optimizer._global_learning_rate().numpy()[0], batch_size) for name, value in outputs.items(): if name is 'hit_at_one' or name is 'perr' or name is 'gap': record_list[name].update(value, batch_size) else: record_list[name].update(value.numpy()[0], batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "train", ips) # learning rate iter step if cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() # learning rate epoch step if not cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "train", ips) def evaluate(best): model.eval() record_list = build_record(cfg.MODEL) record_list.pop('lr') tic = time.time() for i, data in enumerate(valid_loader): if parallel: outputs = model._layers.val_step(data) else: outputs = model.val_step(data) # log_record for name, value in outputs.items(): if name is 'hit_at_one' or name is 'perr' or name is 'gap': record_list[name].update(value, batch_size) else: record_list[name].update(value.numpy()[0], batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "val", ips) ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "val", ips) best_flag = False if head_name == "AttentionLstmHead": if record_list.get( 'hit_at_one') and record_list['hit_at_one'].avg > best: best = record_list['hit_at_one'].avg best_flag = True else: if record_list.get('top1') and record_list['top1'].avg > best: best = record_list['top1'].avg best_flag = True return best, best_flag # use precise bn to improve acc if cfg.get("PRECISEBN") and (epoch % cfg.PRECISEBN.preciseBN_interval == 0 or epoch == cfg.epochs - 1): do_preciseBN( model, train_loader, parallel, min(cfg.PRECISEBN.num_iters_preciseBN, len(train_loader))) # 5. Validation if validate and epoch % cfg.get("val_interval", 1) == 0 or epoch == cfg.epochs - 1: with paddle.fluid.dygraph.no_grad(): best, save_best_flag = evaluate(best) # save best if save_best_flag: save(optimizer.state_dict(), osp.join(output_dir, model_name + "_best.pdopt")) save(model.state_dict(), osp.join(output_dir, model_name + "_best.pdparams")) if head_name == "AttentionLstmHead": logger.info( f"Already save the best model (hit_at_one){best}") else: logger.info( f"Already save the best model (top1 acc){best}") # 6. Save model and optimizer if epoch % cfg.get("save_interval", 1) == 0 or epoch == cfg.epochs - 1: save( optimizer.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdopt")) save( model.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdparams")) logger.info(f'training {model_name} finished')
def train_model(cfg, weights=None, parallel=True, validate=True, amp=False, fleet=False): """Train model entry Args: cfg (dict): configuration. weights (str): weights path for finetuning. parallel (bool): Whether multi-cards training. Default: True. validate (bool): Whether to do evaluation. Default: False. """ if fleet: fleet.init(is_collective=True) logger = get_logger("paddlevideo") batch_size = cfg.DATASET.get('batch_size', 8) valid_batch_size = cfg.DATASET.get('valid_batch_size', batch_size) places = paddle.set_device('gpu') # default num worker: 0, which means no subprocess will be created num_workers = cfg.DATASET.get('num_workers', 0) model_name = cfg.model_name output_dir = cfg.get("output_dir", f"./output/{model_name}") mkdir(output_dir) # 1. Construct model model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) if fleet: model = paddle.distributed_model(model) # 2. Construct dataset and dataloader train_dataset = build_dataset((cfg.DATASET.train, cfg.PIPELINE.train)) train_dataloader_setting = dict(batch_size=batch_size, num_workers=num_workers, collate_fn_cfg=cfg.get('MIX', None), places=places) train_loader = build_dataloader(train_dataset, **train_dataloader_setting) if validate: valid_dataset = build_dataset((cfg.DATASET.valid, cfg.PIPELINE.valid)) validate_dataloader_setting = dict( batch_size=valid_batch_size, num_workers=num_workers, places=places, drop_last=False, shuffle=cfg.DATASET.get( 'shuffle_valid', False) #NOTE: attention lstm need shuffle valid data. ) valid_loader = build_dataloader(valid_dataset, **validate_dataloader_setting) # 3. Construct solver. lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader)) optimizer = build_optimizer(cfg.OPTIMIZER, lr, parameter_list=model.parameters()) if fleet: optimizer = fleet.distributed_optimizer(optimizer) # Resume resume_epoch = cfg.get("resume_epoch", 0) if resume_epoch: filename = osp.join(output_dir, model_name + f"_epoch_{resume_epoch:05d}") resume_model_dict = load(filename + '.pdparams') resume_opt_dict = load(filename + '.pdopt') model.set_state_dict(resume_model_dict) optimizer.set_state_dict(resume_opt_dict) # Finetune: if weights: assert resume_epoch == 0, f"Conflict occurs when finetuning, please switch resume function off by setting resume_epoch to 0 or not indicating it." model_dict = load(weights) model.set_state_dict(model_dict) # 4. Train Model ###AMP### if amp: scaler = paddle.amp.GradScaler(init_loss_scaling=1024) best = 0. for epoch in range(0, cfg.epochs): if epoch < resume_epoch: logger.info( f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... " ) continue model.train() record_list = build_record(cfg.MODEL) tic = time.time() for i, data in enumerate(train_loader): record_list['reader_time'].update(time.time() - tic) # 4.1 forward ###AMP### if amp: with paddle.amp.auto_cast(custom_black_list="temporal_shift"): if parallel: outputs = model._layers.train_step(data) else: outputs = model.train_step(data) avg_loss = outputs['loss'] scaled = scaler.scale(avg_loss) scaled.backward() # keep prior to 2.0 design scaler.minimize(optimizer, scaled) optimizer.clear_grad() else: if parallel: outputs = model._layers.train_step(data) else: outputs = model.train_step(data) # 4.2 backward avg_loss = outputs['loss'] avg_loss.backward() # 4.3 minimize optimizer.step() optimizer.clear_grad() # log record record_list['lr'].update(optimizer._global_learning_rate(), batch_size) for name, value in outputs.items(): record_list[name].update(value, batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "train", ips) # learning rate iter step if cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() # learning rate epoch step if not cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "train", ips) def evaluate(best): model.eval() record_list = build_record(cfg.MODEL) record_list.pop('lr') tic = time.time() for i, data in enumerate(valid_loader): if parallel: outputs = model._layers.val_step(data) else: outputs = model.val_step(data) # log_record for name, value in outputs.items(): record_list[name].update(value, batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "val", ips) ips = "ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "val", ips) best_flag = False for top_flag in ['hit_at_one', 'top1']: if record_list.get( top_flag) and record_list[top_flag].avg > best: best = record_list[top_flag].avg best_flag = True return best, best_flag # use precise bn to improve acc if cfg.get("PRECISEBN") and (epoch % cfg.PRECISEBN.preciseBN_interval == 0 or epoch == cfg.epochs - 1): do_preciseBN( model, train_loader, parallel, min(cfg.PRECISEBN.num_iters_preciseBN, len(train_loader))) # 5. Validation if validate and epoch % cfg.get("val_interval", 1) == 0 or epoch == cfg.epochs - 1: with paddle.fluid.dygraph.no_grad(): best, save_best_flag = evaluate(best) # save best if save_best_flag: save(optimizer.state_dict(), osp.join(output_dir, model_name + "_best.pdopt")) save(model.state_dict(), osp.join(output_dir, model_name + "_best.pdparams")) if model_name == "AttentionLstm": logger.info( f"Already save the best model (hit_at_one){best}") else: logger.info( f"Already save the best model (top1 acc){int(best *10000)/10000}" ) # 6. Save model and optimizer if epoch % cfg.get("save_interval", 1) == 0 or epoch == cfg.epochs - 1: save( optimizer.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdopt")) save( model.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdparams")) logger.info(f'training {model_name} finished')
def train_model(cfg, weights=None, parallel=True, validate=True, amp=False, use_fleet=False): """Train model entry Args: cfg (dict): configuration. weights (str): weights path for finetuning. parallel (bool): Whether multi-cards training. Default: True. validate (bool): Whether to do evaluation. Default: False. """ if use_fleet: fleet.init(is_collective=True) logger = get_logger("paddlevideo") batch_size = cfg.DATASET.get('batch_size', 8) valid_batch_size = cfg.DATASET.get('valid_batch_size', batch_size) use_gradient_accumulation = cfg.get('GRADIENT_ACCUMULATION', None) if use_gradient_accumulation and dist.get_world_size() >= 1: global_batch_size = cfg.GRADIENT_ACCUMULATION.get( 'global_batch_size', None) num_gpus = dist.get_world_size() assert isinstance( global_batch_size, int ), f"global_batch_size must be int, but got {type(global_batch_size)}" assert batch_size < global_batch_size, f"global_batch_size must bigger than batch_size" cur_global_batch_size = batch_size * num_gpus # The number of batches calculated by all GPUs at one time assert global_batch_size % cur_global_batch_size == 0, \ f"The global batchsize must be divisible by cur_global_batch_size, but \ {global_batch_size} % {cur_global_batch_size} != 0" cfg.GRADIENT_ACCUMULATION[ "num_iters"] = global_batch_size // cur_global_batch_size # The number of iterations required to reach the global batchsize logger.info( f"Using gradient accumulation training strategy, " f"global_batch_size={global_batch_size}, " f"num_gpus={num_gpus}, " f"num_accumulative_iters={cfg.GRADIENT_ACCUMULATION.num_iters}") places = paddle.set_device('gpu') # default num worker: 0, which means no subprocess will be created num_workers = cfg.DATASET.get('num_workers', 0) valid_num_workers = cfg.DATASET.get('valid_num_workers', num_workers) model_name = cfg.model_name output_dir = cfg.get("output_dir", f"./output/{model_name}") mkdir(output_dir) # 1. Construct model model = build_model(cfg.MODEL) if parallel: model = paddle.DataParallel(model) if use_fleet: model = paddle.distributed_model(model) # 2. Construct dataset and dataloader train_dataset = build_dataset((cfg.DATASET.train, cfg.PIPELINE.train)) train_dataloader_setting = dict(batch_size=batch_size, num_workers=num_workers, collate_fn_cfg=cfg.get('MIX', None), places=places) train_loader = build_dataloader(train_dataset, **train_dataloader_setting) if validate: valid_dataset = build_dataset((cfg.DATASET.valid, cfg.PIPELINE.valid)) validate_dataloader_setting = dict( batch_size=valid_batch_size, num_workers=valid_num_workers, places=places, drop_last=False, shuffle=cfg.DATASET.get( 'shuffle_valid', False) #NOTE: attention lstm need shuffle valid data. ) valid_loader = build_dataloader(valid_dataset, **validate_dataloader_setting) # 3. Construct solver. lr = build_lr(cfg.OPTIMIZER.learning_rate, len(train_loader)) optimizer = build_optimizer(cfg.OPTIMIZER, lr, parameter_list=model.parameters()) if use_fleet: optimizer = fleet.distributed_optimizer(optimizer) # Resume resume_epoch = cfg.get("resume_epoch", 0) if resume_epoch: filename = osp.join(output_dir, model_name + f"_epoch_{resume_epoch:05d}") resume_model_dict = load(filename + '.pdparams') resume_opt_dict = load(filename + '.pdopt') model.set_state_dict(resume_model_dict) optimizer.set_state_dict(resume_opt_dict) # Finetune: if weights: assert resume_epoch == 0, f"Conflict occurs when finetuning, please switch resume function off by setting resume_epoch to 0 or not indicating it." model_dict = load(weights) model.set_state_dict(model_dict) # 4. Train Model ###AMP### if amp: scaler = paddle.amp.GradScaler(init_loss_scaling=2.0**16, incr_every_n_steps=2000, decr_every_n_nan_or_inf=1) best = 0. for epoch in range(0, cfg.epochs): if epoch < resume_epoch: logger.info( f"| epoch: [{epoch+1}] <= resume_epoch: [{ resume_epoch}], continue... " ) continue model.train() record_list = build_record(cfg.MODEL) tic = time.time() for i, data in enumerate(train_loader): record_list['reader_time'].update(time.time() - tic) # 4.1 forward ###AMP### if amp: with paddle.amp.auto_cast(custom_black_list={"reduce_mean"}): outputs = model(data, mode='train') avg_loss = outputs['loss'] scaled = scaler.scale(avg_loss) scaled.backward() # keep prior to 2.0 design scaler.minimize(optimizer, scaled) optimizer.clear_grad() else: outputs = model(data, mode='train') # 4.2 backward if use_gradient_accumulation and i == 0: # Use gradient accumulation strategy optimizer.clear_grad() avg_loss = outputs['loss'] avg_loss.backward() # 4.3 minimize if use_gradient_accumulation: # Use gradient accumulation strategy if (i + 1) % cfg.GRADIENT_ACCUMULATION.num_iters == 0: for p in model.parameters(): p.grad.set_value( p.grad / cfg.GRADIENT_ACCUMULATION.num_iters) optimizer.step() optimizer.clear_grad() else: # Common case optimizer.step() optimizer.clear_grad() # log record record_list['lr'].update(optimizer.get_lr(), batch_size) for name, value in outputs.items(): record_list[name].update(value, batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "train", ips) # learning rate iter step if cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() # learning rate epoch step if not cfg.OPTIMIZER.learning_rate.get("iter_step"): lr.step() ips = "avg_ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "train", ips) def evaluate(best): model.eval() record_list = build_record(cfg.MODEL) record_list.pop('lr') tic = time.time() for i, data in enumerate(valid_loader): outputs = model(data, mode='valid') # log_record for name, value in outputs.items(): record_list[name].update(value, batch_size) record_list['batch_time'].update(time.time() - tic) tic = time.time() if i % cfg.get("log_interval", 10) == 0: ips = "ips: {:.5f} instance/sec.".format( batch_size / record_list["batch_time"].val) log_batch(record_list, i, epoch + 1, cfg.epochs, "val", ips) ips = "avg_ips: {:.5f} instance/sec.".format( batch_size * record_list["batch_time"].count / record_list["batch_time"].sum) log_epoch(record_list, epoch + 1, "val", ips) best_flag = False for top_flag in ['hit_at_one', 'top1']: if record_list.get( top_flag) and record_list[top_flag].avg > best: best = record_list[top_flag].avg best_flag = True return best, best_flag # use precise bn to improve acc if cfg.get("PRECISEBN") and (epoch % cfg.PRECISEBN.preciseBN_interval == 0 or epoch == cfg.epochs - 1): do_preciseBN( model, train_loader, parallel, min(cfg.PRECISEBN.num_iters_preciseBN, len(train_loader))) # 5. Validation if validate and (epoch % cfg.get("val_interval", 1) == 0 or epoch == cfg.epochs - 1): with paddle.no_grad(): best, save_best_flag = evaluate(best) # save best if save_best_flag: save(optimizer.state_dict(), osp.join(output_dir, model_name + "_best.pdopt")) save(model.state_dict(), osp.join(output_dir, model_name + "_best.pdparams")) if model_name == "AttentionLstm": logger.info( f"Already save the best model (hit_at_one){best}") else: logger.info( f"Already save the best model (top1 acc){int(best *10000)/10000}" ) # 6. Save model and optimizer if epoch % cfg.get("save_interval", 1) == 0 or epoch == cfg.epochs - 1: save( optimizer.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdopt")) save( model.state_dict(), osp.join(output_dir, model_name + f"_epoch_{epoch+1:05d}.pdparams")) logger.info(f'training {model_name} finished')