def run(self): while True: mainLog = self.make_logger(_logger, 'id={0}'.format(self.get_pid()), method_name='run') mainLog.debug('getting number of jobs to be fetched') # get number of jobs to be fetched nJobsPerQueue = self.dbProxy.get_num_jobs_to_fetch( harvester_config.jobfetcher.nQueues, harvester_config.jobfetcher.lookupTime) mainLog.debug('got {0} queues'.format(len(nJobsPerQueue))) # loop over all queues for queueName, nJobs in iteritems(nJobsPerQueue): # check queue if not self.queueConfigMapper.has_queue(queueName): continue tmpLog = self.make_logger(_logger, 'queueName={0}'.format(queueName), method_name='run') # get queue queueConfig = self.queueConfigMapper.get_queue(queueName) # upper limit if nJobs > harvester_config.jobfetcher.maxJobs: nJobs = harvester_config.jobfetcher.maxJobs # get jobs default_prodSourceLabel = queueConfig.get_source_label() pdpm = getattr(queueConfig, 'prodSourceLabelRandomWeightsPermille', {}) choice_list = core_utils.make_choice_list( pdpm=pdpm, default=default_prodSourceLabel) prodSourceLabel = random.choice(choice_list) tmpLog.debug('getting {0} jobs for prodSourceLabel {1}'.format( nJobs, prodSourceLabel)) sw = core_utils.get_stopwatch() siteName = queueConfig.siteName jobs, errStr = self.communicator.get_jobs( siteName, self.nodeName, prodSourceLabel, self.nodeName, nJobs, queueConfig.getJobCriteria) tmpLog.info('got {0} jobs with {1} {2}'.format( len(jobs), errStr, sw.get_elapsed_time())) # convert to JobSpec if len(jobs) > 0: # get extractor plugin if hasattr(queueConfig, 'extractor'): extractorCore = self.pluginFactory.get_plugin( queueConfig.extractor) else: extractorCore = None jobSpecs = [] fileStatMap = dict() sw_startconvert = core_utils.get_stopwatch() for job in jobs: timeNow = datetime.datetime.utcnow() jobSpec = JobSpec() jobSpec.convert_job_json(job) jobSpec.computingSite = queueName jobSpec.status = 'starting' jobSpec.subStatus = 'fetched' jobSpec.creationTime = timeNow jobSpec.stateChangeTime = timeNow jobSpec.configID = queueConfig.configID jobSpec.set_one_attribute( 'schedulerID', 'harvester-{0}'.format( harvester_config.master.harvester_id)) if queueConfig.zipPerMB is not None and jobSpec.zipPerMB is None: jobSpec.zipPerMB = queueConfig.zipPerMB fileGroupDictList = [ jobSpec.get_input_file_attributes() ] if extractorCore is not None: fileGroupDictList.append( extractorCore.get_aux_inputs(jobSpec)) for fileGroupDict in fileGroupDictList: for tmpLFN, fileAttrs in iteritems(fileGroupDict): # check file status if tmpLFN not in fileStatMap: fileStatMap[ tmpLFN] = self.dbProxy.get_file_status( tmpLFN, 'input', queueConfig.ddmEndpointIn, 'starting') # make file spec fileSpec = FileSpec() fileSpec.PandaID = jobSpec.PandaID fileSpec.taskID = jobSpec.taskID fileSpec.lfn = tmpLFN fileSpec.endpoint = queueConfig.ddmEndpointIn fileSpec.scope = fileAttrs['scope'] # set preparing to skip stage-in if the file is (being) taken care of by another job if 'ready' in fileStatMap[tmpLFN] or 'preparing' in fileStatMap[tmpLFN] \ or 'to_prepare' in fileStatMap[tmpLFN]: fileSpec.status = 'preparing' else: fileSpec.status = 'to_prepare' if fileSpec.status not in fileStatMap[tmpLFN]: fileStatMap[tmpLFN][fileSpec.status] = 0 fileStatMap[tmpLFN][fileSpec.status] += 1 if 'INTERNAL_FileType' in fileAttrs: fileSpec.fileType = fileAttrs[ 'INTERNAL_FileType'] jobSpec.auxInput = JobSpec.AUX_hasAuxInput else: fileSpec.fileType = 'input' if 'INTERNAL_URL' in fileAttrs: fileSpec.url = fileAttrs['INTERNAL_URL'] jobSpec.add_in_file(fileSpec) jobSpec.trigger_propagation() jobSpecs.append(jobSpec) # insert to DB tmpLog.debug("Converting of {0} jobs {1}".format( len(jobs), sw_startconvert.get_elapsed_time())) sw_insertdb = core_utils.get_stopwatch() self.dbProxy.insert_jobs(jobSpecs) tmpLog.debug('Insert of {0} jobs {1}'.format( len(jobSpecs), sw_insertdb.get_elapsed_time())) mainLog.debug('done') # check if being terminated if self.terminated(harvester_config.jobfetcher.sleepTime): mainLog.debug('terminated') return
def run(self): while True: mainLog = self.make_logger(_logger, 'id={0}'.format(self.get_pid()), method_name='run') mainLog.debug('getting number of jobs to be fetched') # get number of jobs to be fetched nJobsPerQueue = self.dbProxy.get_num_jobs_to_fetch(harvester_config.jobfetcher.nQueues, harvester_config.jobfetcher.lookupTime) mainLog.debug('got {0} queues'.format(len(nJobsPerQueue))) # loop over all queues for queueName, nJobs in iteritems(nJobsPerQueue): # check queue if not self.queueConfigMapper.has_queue(queueName): continue tmpLog = self.make_logger(_logger, 'queueName={0}'.format(queueName), method_name='run') # get queue queueConfig = self.queueConfigMapper.get_queue(queueName) # upper limit if nJobs > harvester_config.jobfetcher.maxJobs: nJobs = harvester_config.jobfetcher.maxJobs # get jobs tmpLog.debug('getting {0} jobs'.format(nJobs)) sw = core_utils.get_stopwatch() siteName = queueConfig.siteName jobs, errStr = self.communicator.get_jobs(siteName, self.nodeName, queueConfig.get_source_label(), self.nodeName, nJobs, queueConfig.getJobCriteria) tmpLog.info('got {0} jobs with {1} {2}'.format(len(jobs), errStr, sw.get_elapsed_time())) # convert to JobSpec if len(jobs) > 0: jobSpecs = [] fileStatMap = dict() sw_startconvert = core_utils.get_stopwatch() for job in jobs: timeNow = datetime.datetime.utcnow() jobSpec = JobSpec() jobSpec.convert_job_json(job) jobSpec.computingSite = queueName jobSpec.status = 'starting' jobSpec.subStatus = 'fetched' jobSpec.creationTime = timeNow jobSpec.stateChangeTime = timeNow jobSpec.configID = queueConfig.configID jobSpec.set_one_attribute('schedulerID', 'harvester-{0}'.format(harvester_config.master.harvester_id)) if queueConfig.zipPerMB is not None and jobSpec.zipPerMB is None: jobSpec.zipPerMB = queueConfig.zipPerMB for tmpLFN, fileAttrs in iteritems(jobSpec.get_input_file_attributes()): # check file status if tmpLFN not in fileStatMap: fileStatMap[tmpLFN] = self.dbProxy.get_file_status(tmpLFN, 'input', queueConfig.ddmEndpointIn, 'starting') # make file spec fileSpec = FileSpec() fileSpec.PandaID = jobSpec.PandaID fileSpec.taskID = jobSpec.taskID fileSpec.lfn = tmpLFN fileSpec.endpoint = queueConfig.ddmEndpointIn fileSpec.scope = fileAttrs['scope'] # set preparing to skip stage-in if the file is (being) taken care of by another job if 'ready' in fileStatMap[tmpLFN] or 'preparing' in fileStatMap[tmpLFN] \ or 'to_prepare' in fileStatMap[tmpLFN]: fileSpec.status = 'preparing' else: fileSpec.status = 'to_prepare' if fileSpec.status not in fileStatMap[tmpLFN]: fileStatMap[tmpLFN][fileSpec.status] = 0 fileStatMap[tmpLFN][fileSpec.status] += 1 fileSpec.fileType = 'input' jobSpec.add_in_file(fileSpec) jobSpec.trigger_propagation() jobSpecs.append(jobSpec) # insert to DB tmpLog.debug("Converting of {0} jobs {1}".format(len(jobs),sw_startconvert.get_elapsed_time())) sw_insertdb =core_utils.get_stopwatch() self.dbProxy.insert_jobs(jobSpecs) tmpLog.debug('Insert of {0} jobs {1}'.format(len(jobSpecs), sw_insertdb.get_elapsed_time())) mainLog.debug('done') # check if being terminated if self.terminated(harvester_config.jobfetcher.sleepTime): mainLog.debug('terminated') return
def run(self): while True: mainLog = self.make_logger(_logger, 'id={0}'.format(self.ident), method_name='run') mainLog.debug('getting number of jobs to be fetched') # get number of jobs to be fetched nJobsPerQueue = self.dbProxy.get_num_jobs_to_fetch( harvester_config.jobfetcher.nQueues, harvester_config.jobfetcher.lookupTime) mainLog.debug('got {0} queues'.format(len(nJobsPerQueue))) # loop over all queues for queueName, nJobs in iteritems(nJobsPerQueue): # check queue if not self.queueConfigMapper.has_queue(queueName): continue tmpLog = self.make_logger(_logger, 'queueName={0}'.format(queueName), method_name='run') # get queue queueConfig = self.queueConfigMapper.get_queue(queueName) # upper limit if nJobs > harvester_config.jobfetcher.maxJobs: nJobs = harvester_config.jobfetcher.maxJobs # get jobs tmpLog.debug('getting {0} jobs'.format(nJobs)) siteName = queueConfig.siteName jobs, errStr = self.communicator.get_jobs( siteName, self.nodeName, queueConfig.get_source_label(), self.nodeName, nJobs, queueConfig.getJobCriteria) tmpLog.info('got {0} jobs with {1}'.format(len(jobs), errStr)) # convert to JobSpec if len(jobs) > 0: jobSpecs = [] fileStatMap = dict() for job in jobs: timeNow = datetime.datetime.utcnow() jobSpec = JobSpec() jobSpec.convert_job_json(job) jobSpec.computingSite = queueName jobSpec.status = 'starting' jobSpec.subStatus = 'fetched' jobSpec.creationTime = timeNow jobSpec.stateChangeTime = timeNow jobSpec.configID = queueConfig.configID jobSpec.set_one_attribute( 'schedulerID', 'harvester-{0}'.format( harvester_config.master.harvester_id)) if queueConfig.zipPerMB is not None and jobSpec.zipPerMB is None: jobSpec.zipPerMB = queueConfig.zipPerMB for tmpLFN, fileAttrs in iteritems( jobSpec.get_input_file_attributes()): # check file status if tmpLFN not in fileStatMap: fileStatMap[ tmpLFN] = self.dbProxy.get_file_status( tmpLFN, 'input', queueConfig.ddmEndpointIn, 'starting') # make file spec fileSpec = FileSpec() fileSpec.PandaID = jobSpec.PandaID fileSpec.taskID = jobSpec.taskID fileSpec.lfn = tmpLFN fileSpec.endpoint = queueConfig.ddmEndpointIn fileSpec.scope = fileAttrs['scope'] # set preparing to skip stage-in if the file is (being) taken care of by another job if 'ready' in fileStatMap[tmpLFN] or 'preparing' in fileStatMap[tmpLFN] \ or 'to_prepare' in fileStatMap[tmpLFN]: fileSpec.status = 'preparing' else: fileSpec.status = 'to_prepare' if fileSpec.status not in fileStatMap[tmpLFN]: fileStatMap[tmpLFN][fileSpec.status] = 0 fileStatMap[tmpLFN][fileSpec.status] += 1 fileSpec.fileType = 'input' jobSpec.add_in_file(fileSpec) jobSpec.trigger_propagation() jobSpecs.append(jobSpec) # insert to DB self.dbProxy.insert_jobs(jobSpecs) mainLog.debug('done') # check if being terminated if self.terminated(harvester_config.jobfetcher.sleepTime): mainLog.debug('terminated') return