예제 #1
0
def _calc_sc(net):
    #    t0 = time.perf_counter()
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    #    t1 = time.perf_counter()
    _calc_ybus(ppci)
    #    t2 = time.perf_counter()
    _calc_zbus(ppci)
    _calc_rx(net, ppci)
    #    t3 = time.perf_counter()
    _add_kappa_to_ppc(net, ppci)
    #    t4 = time.perf_counter()
    _calc_ikss(net, ppci)
    if net["_options"]["ip"]:
        _calc_ip(net, ppci)
    if net["_options"]["ith"]:
        _calc_ith(net, ppci)
    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci)
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc)
    _clean_up(net)


#    t5 = time.perf_counter()
#    net._et = {"sum": t5-t0, "model": t1-t0, "ybus": t2-t1, "zbus": t3-t2, "kappa": t4-t3,
#               "currents": t5-t4}
예제 #2
0
파일: calc_sc.py 프로젝트: xfmjn/pandapower
def _calc_sc(net):
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)
    try:
        _calc_zbus(ppci)
    except Exception as e:
        _clean_up(net, res=False)
        raise (e)
    _calc_rx(net, ppci)
    _add_kappa_to_ppc(net, ppci)
    _calc_ikss(net, ppci)
    if net["_options"]["ip"]:
        _calc_ip(net, ppci)
    if net["_options"]["ith"]:
        _calc_ith(net, ppci)
    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci)

    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")

    if net["_options"]["return_all_currents"]:
        _extract_results(net, ppc, ppc_0=None)
    else:
        _extract_results(net, ppc, ppc_0=None)
    _clean_up(net)
예제 #3
0
def _optimal_powerflow(net, verbose, suppress_warnings, **kwargs):
    ac = net["_options"]["ac"]

    ppopt = ppoption(VERBOSE=verbose, OPF_FLOW_LIM=2, PF_DC=not ac, **kwargs)
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)
    reset_results(net)

    ppc, ppci = _pd2ppc(net)
    if not ac:
        ppci["bus"][:, VM] = 1.0
    net["_ppc_opf"] = ppc
    if len(net.dcline) > 0:
        ppci = add_userfcn(ppci, 'formulation', _add_dcline_constraints, args=net)

    if suppress_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            result = opf(ppci, ppopt)
    else:
        result = opf(ppci, ppopt)
    net["_ppc_opf"] = result

    if not result["success"]:
        raise OPFNotConverged("Optimal Power Flow did not converge!")

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    mode = net["_options"]["mode"]
    result = _copy_results_ppci_to_ppc(result, ppc, mode=mode)

    net["_ppc_opf"] = result
    net["OPF_converged"] = True
    _extract_results_opf(net, result)
    _clean_up(net)
예제 #4
0
def _calc_sc_1ph(net, bus):
    """
    calculation method for single phase to ground short-circuit currents
    """
    _add_auxiliary_elements(net)
    # pos. seq bus impedance
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)

    # zero seq bus impedance
    ppc_0, ppci_0 = _pd2ppc_zero(net)
    _calc_ybus(ppci_0)

    if net["_options"]["inverse_y"]:
        _calc_zbus(net, ppci)
        _calc_zbus(net, ppci_0)
    else:
        # Factorization Ybus once
        ppci["internal"]["ybus_fact"] = factorized(ppci["internal"]["Ybus"])
        ppci_0["internal"]["ybus_fact"] = factorized(
            ppci_0["internal"]["Ybus"])

    _calc_rx(net, ppci, bus=bus)
    _add_kappa_to_ppc(net, ppci)

    _calc_rx(net, ppci_0, bus=bus)
    _calc_ikss_1ph(net, ppci, ppci_0, bus=bus)

    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci, bus=bus)
    ppc_0 = _copy_results_ppci_to_ppc(ppci_0, ppc_0, "sc")
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc, ppc_0, bus=bus)
    _clean_up(net)
예제 #5
0
def _calc_sc(net, bus):
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)

    if net["_options"]["inverse_y"]:
        _calc_zbus(net, ppci)
    else:
        # Factorization Ybus once
        ppci["internal"]["ybus_fact"] = factorized(ppci["internal"]["Ybus"])

    _calc_rx(net, ppci, bus)

    # kappa required inverse of Zbus, which is optimized
    if net["_options"]["kappa"]:
        _add_kappa_to_ppc(net, ppci)
    _calc_ikss(net, ppci, bus)

    if net["_options"]["ip"]:
        _calc_ip(net, ppci)
    if net["_options"]["ith"]:
        _calc_ith(net, ppci)

    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci, bus)

    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc, ppc_0=None, bus=bus)
    _clean_up(net)

    if "ybus_fact" in ppci["internal"]:
        # Delete factorization object
        ppci["internal"].pop("ybus_fact")
예제 #6
0
def _calc_sc(net):
    #    t0 = time.perf_counter()
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
#    t1 = time.perf_counter()
    _calc_ybus(ppci)
#    t2 = time.perf_counter()
    try:
        _calc_zbus(ppci)
    except Exception as e:
        _clean_up(net, res=False)
        raise(e)
    _calc_rx(net, ppci)
#    t3 = time.perf_counter()
    _add_kappa_to_ppc(net, ppci)
#    t4 = time.perf_counter()
    _calc_ikss(net, ppci)
    if net["_options"]["ip"]:
        _calc_ip(net, ppci)
    if net["_options"]["ith"]:
        _calc_ith(net, ppci)
    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci)
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc, ppc_0=None)
    _clean_up(net)
예제 #7
0
def _powerflow(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    init_results = net["_options"]["init_results"]
    ac = net["_options"]["ac"]
    recycle = net["_options"]["recycle"]
    mode = net["_options"]["mode"]
    algorithm = net["_options"]["algorithm"]
    max_iteration = net["_options"]["max_iteration"]

    net["converged"] = False
    net["OPF_converged"] = False
    _add_auxiliary_elements(net)

    if not ac or init_results:
        verify_results(net)
    else:
        reset_results(net)

    # TODO remove this when zip loads are integrated for all PF algorithms
    if algorithm not in ['nr', 'bfsw']:
        net["_options"]["voltage_depend_loads"] = False

    if recycle["ppc"] and "_ppc" in net and net[
            "_ppc"] is not None and "_pd2ppc_lookups" in net:
        # update the ppc from last cycle
        ppc, ppci = _update_ppc(net)
    else:
        # convert pandapower net to ppc
        ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # ----- run the powerflow -----
    result = _run_pf_algorithm(ppci, net["_options"], **kwargs)

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    result = _copy_results_ppci_to_ppc(result, ppc, mode)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        _clean_up(net, res=False)
        raise LoadflowNotConverged("Power Flow {0} did not converge after "
                                   "{1} iterations!".format(
                                       algorithm, max_iteration))
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result)
    _clean_up(net)
예제 #8
0
def _runpppf_dd(net, init, ac, calculate_voltage_angles, tolerance_kva,
                trafo_model, trafo_loading, enforce_q_lims, numba, recycle,
                **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    net["converged"] = False
    if (ac and not init == "results") or not ac:
        reset_results(net)

    # select elements in service (time consuming, so we do it once)
    is_elems = _select_is_elements(net, recycle)

    if recycle["ppc"] and "_ppc" in net and net[
            "_ppc"] is not None and "_bus_lookup" in net:
        # update the ppc from last cycle
        ppc, ppci, bus_lookup = _update_ppc(net, is_elems, recycle,
                                            calculate_voltage_angles,
                                            enforce_q_lims, trafo_model)
    else:
        # convert pandapower net to ppc
        ppc, ppci, bus_lookup = _pd2ppc(net,
                                        is_elems,
                                        calculate_voltage_angles,
                                        enforce_q_lims,
                                        trafo_model,
                                        init_results=(init == "results"))

    # store variables
    net["_ppc"] = ppc
    net["_bus_lookup"] = bus_lookup
    net["_is_elems"] = is_elems

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # run the powerflow
    result = _run_fbsw(ppci,
                       ppopt=ppoption(ENFORCE_Q_LIMS=enforce_q_lims,
                                      PF_TOL=tolerance_kva * 1e-3,
                                      **kwargs))[0]

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    result = _copy_results_ppci_to_ppc(result, ppc, bus_lookup)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        raise LoadflowNotConverged("Loadflow did not converge!")
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result, is_elems, bus_lookup, trafo_loading, ac)
    _clean_up(net)
예제 #9
0
def _calc_sc(net):
    # net["_is_elements"] = _select_is_elements(net)
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    _calc_equiv_sc_impedance(net, ppci)
    _add_kappa_to_ppc(net, ppci)
    _calc_ikss(net, ppci)
    _calc_ip(ppci)
    _calc_ith(net, ppci)
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc)
    _clean_up(net)
예제 #10
0
def _calc_sc(net, bus):
    ppc, ppci = _init_ppc(net)

    _calc_current(net, ppci, bus)

    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc, ppc_0=None, bus=bus)
    _clean_up(net)

    if "ybus_fact" in ppci["internal"]:
        # Delete factorization object
        ppci["internal"].pop("ybus_fact")
예제 #11
0
def _calc_zbus(net, ppci):
    try:
        Ybus = ppci["internal"]["Ybus"]
        sparsity = Ybus.nnz / Ybus.shape[0]**2
        if sparsity < 0.002:
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                ppci["internal"]["Zbus"] = inv_sparse(Ybus).toarray()
        else:
            ppci["internal"]["Zbus"] = inv(Ybus.toarray())
    except Exception as e:
        _clean_up(net, res=False)
        raise (e)
예제 #12
0
파일: calc_sc.py 프로젝트: xfmjn/pandapower
def _calc_sc_single(net, bus):
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)
    try:
        _calc_zbus(ppci)
    except Exception as e:
        _clean_up(net, res=False)
        raise (e)
    _calc_rx(net, ppci)
    _calc_ikss(net, ppci)
    _calc_single_bus_sc(net, ppci, bus)
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_single_results(net, ppc)
    _clean_up(net)
예제 #13
0
def read_pm_results_to_net(net, ppc, ppci, result_pm):
    """
    reads power models results from result_pm to ppc / ppci and then to pandapower net
    """
    # read power models results from result_pm to result (== ppc with results)
    result, multinetwork = pm_results_to_ppc_results(net, ppc, ppci, result_pm)
    net._pm_result = result_pm
    success = ppc["success"]
    if success:
        if not multinetwork:
            # results are extracted from a single time step to pandapower dataframes
            _extract_results(net, result)
        _clean_up(net)
        net["OPF_converged"] = True
    else:
        _clean_up(net, res=False)
        logger.warning("OPF did not converge!")
예제 #14
0
def _powerflow(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    init = net["_options"]["init"]
    ac = net["_options"]["ac"]
    recycle = net["_options"]["recycle"]
    mode = net["_options"]["mode"]

    net["converged"] = False
    _add_auxiliary_elements(net)

    if (ac and not init == "results") or not ac:
        reset_results(net)

    if recycle["ppc"] and "_ppc" in net and net[
            "_ppc"] is not None and "_pd2ppc_lookups" in net:
        # update the ppc from last cycle
        ppc, ppci = _update_ppc(net)
    else:
        # convert pandapower net to ppc
        ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # ----- run the powerflow -----
    result = _run_pf_algorithm(ppci, net["_options"], **kwargs)

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    result = _copy_results_ppci_to_ppc(result, ppc, mode)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        raise LoadflowNotConverged("Power Flow did not converge!")
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result)
    _clean_up(net)
예제 #15
0
def _ppci_to_net(result, net):
    # reads the results from result (== ppci with results) to pandapower net

    mode = net["_options"]["mode"]
    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    ppc = net["_ppc"]
    result = _copy_results_ppci_to_ppc(result, ppc, mode)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        _clean_up(net, res=False)
        algorithm = net["_options"]["algorithm"]
        max_iteration = net["_options"]["max_iteration"]
        raise LoadflowNotConverged("Power Flow {0} did not converge after "
                                   "{1} iterations!".format(algorithm, max_iteration))
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result)
    _clean_up(net)
예제 #16
0
def read_pm_results_to_net(net, ppc, ppci, result_pm):
    """
    reads power models results from result_pm to ppc / ppci and then to pandapower net
    """
    # read power models results from result_pm to result (== ppc with results)
    net._pm_result_orig = result_pm
    result_pm = _deep_copy_pm_results(result_pm)
    result_pm = _convert_pm_units_to_pp_units(result_pm, net.sn_mva)
    net._pm_result = result_pm
    result, multinetwork = pm_results_to_ppc_results(net, ppc, ppci, result_pm)
    success = ppc["success"]
    if success:
        if not multinetwork:
            # results are extracted from a single time step to pandapower dataframes
            _extract_results(net, result)
        _clean_up(net)
        net["OPF_converged"] = True
    else:
        _clean_up(net, res=False)
        logger.warning("OPF did not converge!")
        raise OPFNotConverged("PowerModels.jl OPF not converged")
예제 #17
0
파일: calc_sc.py 프로젝트: xfmjn/pandapower
def _calc_sc_1ph(net):
    """
    calculation method for single phase to ground short-circuit currents
    """
    _add_auxiliary_elements(net)
    # pos. seq bus impedance
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)
    try:
        _calc_zbus(ppci)
    except Exception as e:
        _clean_up(net, res=False)
        raise (e)
    _calc_rx(net, ppci)
    _add_kappa_to_ppc(net, ppci)
    # zero seq bus impedance
    ppc_0, ppci_0 = _pd2ppc_zero(net)
    _calc_ybus(ppci_0)
    try:
        _calc_zbus(ppci_0)
    except Exception as e:
        _clean_up(net, res=False)
        raise (e)
    _calc_rx(net, ppci_0)
    _calc_ikss_1ph(net, ppci, ppci_0)
    if net._options["branch_results"]:
        _calc_branch_currents(net, ppci)
    ppc_0 = _copy_results_ppci_to_ppc(ppci_0, ppc_0, "sc")
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_results(net, ppc, ppc_0)
    _clean_up(net)
예제 #18
0
def _runpm(net, julia_file=None, pp_to_pm_callback=None):
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)
    reset_results(net)
    ppc, ppci = _pd2ppc(net)
    pm = ppc_to_pm(net, ppci)
    net._pm = pm
    if pp_to_pm_callback is not None:
        pp_to_pm_callback(net, ppci, pm)
    result_pm = _call_powermodels(pm, julia_file)
    net._result_pm = result_pm
    result = pm_results_to_ppc_results(net, ppc, ppci, result_pm)
    success = ppc["success"]
    net["_ppc_opf"] = ppci
    if success:
        _extract_results_opf(net, result)
        _clean_up(net)
        net["OPF_converged"] = True
    else:
        _clean_up(net)
        logger.warning("OPF did not converge!")
예제 #19
0
파일: runpm.py 프로젝트: zzn1220/pandapower
def _runpm(net):  #pragma: no cover
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)
    reset_results(net)
    ppc, ppci = _pd2ppc(net)
    net["_ppc_opf"] = ppci
    pm = ppc_to_pm(net, ppci)
    net._pm = pm
    if net._options["pp_to_pm_callback"] is not None:
        net._options["pp_to_pm_callback"](net, ppci, pm)
    result_pm = _call_powermodels(pm, net._options["julia_file"])
    net._pm_res = result_pm
    result = pm_results_to_ppc_results(net, ppc, ppci, result_pm)
    net._pm_result = result_pm
    success = ppc["success"]
    if success:
        _extract_results(net, result)
        _clean_up(net)
        net["OPF_converged"] = True
    else:
        _clean_up(net, res=False)
        logger.warning("OPF did not converge!")
예제 #20
0
def _extract_result_ppci_to_pp(net, ppc, ppci):
    # convert to pandapower indices
    ppc = _copy_results_ppci_to_ppc(ppci, ppc, mode="se")

    # extract results from ppc
    try:
        _add_pf_options(net,
                        tolerance_mva=1e-8,
                        trafo_loading="current",
                        numba=True,
                        ac=True,
                        algorithm='nr',
                        max_iteration="auto")
    except:
        pass
    # writes res_bus.vm_pu / va_degree and res_line
    _extract_results_se(net, ppc)

    # restore backup of previous results
    _rename_results(net)

    # additionally, write bus power demand results (these are not written in _extract_results)
    mapping_table = net["_pd2ppc_lookups"]["bus"]
    net.res_bus_est.index = net.bus.index
    net.res_bus_est.p_mw = get_values(ppc["bus"][:, 2], net.bus.index.values,
                                      mapping_table)
    net.res_bus_est.q_mvar = get_values(ppc["bus"][:, 3], net.bus.index.values,
                                        mapping_table)

    _clean_up(net)
    # delete results which are not correctly calculated
    for k in list(net.keys()):
        if k.startswith("res_") and k.endswith("_est") and \
                k not in ("res_bus_est", "res_line_est", "res_trafo_est", "res_trafo3w_est"):
            del net[k]
    return net
예제 #21
0
def _calc_sc_single(net, bus):
    _add_auxiliary_elements(net)
    ppc, ppci = _pd2ppc(net)
    _calc_ybus(ppci)

    if net["_options"]["inverse_y"]:
        _calc_zbus(net, ppci)
        _calc_rx(net, ppci, bus=None)
        _calc_ikss(net, ppci, bus=None)
        _calc_single_bus_sc(net, ppci, bus)
    else:
        # Factorization Ybus once
        ppci["internal"]["ybus_fact"] = factorized(ppci["internal"]["Ybus"])

        _calc_rx(net, ppci, bus)
        _calc_ikss(net, ppci, bus)
        _calc_single_bus_sc_no_y_inv(net, ppci, bus)

        # Delete factorization object
        ppci["internal"].pop("ybus_fact")

    ppc = _copy_results_ppci_to_ppc(ppci, ppc, "sc")
    _extract_single_results(net, ppc)
    _clean_up(net)
예제 #22
0
    def ts_newtonpf(self, net):
        options = net["_options"]

        bus = self.ppci["bus"]
        branch = self.ppci["branch"]
        gen = self.ppci["gen"]
        # compute complex bus power injections [generation - load]
        # self.Cg = _get_Cg(gen_on, bus)
        # Sbus = _get_Sbus(self.baseMVA, bus, gen, self.Cg)
        Sbus = makeSbus(self.baseMVA, bus, gen)

        # run the newton power  flow
        V, success, _, _, _, _ = nr_pf.newtonpf(self.Ybus, Sbus, self.V,
                                                self.pv, self.pq, self.ppci,
                                                options)

        if not success:
            logger.warning("Loadflow not converged")
            logger.info("Lines of of service:")
            logger.info(net.line[~net.line.in_service])
            raise LoadflowNotConverged("Power Flow did not converge after")

        if self.ppci["gen"].shape[
                0] == 1 and not options["voltage_depend_loads"]:
            pfsoln = pf_solution_single_slack
        else:
            pfsoln = pfsoln_full

        bus, gen, branch = pfsoln(self.baseMVA,
                                  bus,
                                  gen,
                                  branch,
                                  self.Ybus,
                                  self.Yf,
                                  self.Yt,
                                  V,
                                  self.ref,
                                  self.ref_gens,
                                  Ibus=self.Ibus)

        self.ppci["bus"] = bus
        self.ppci["branch"] = branch
        self.ppci["gen"] = gen
        self.ppci["success"] = success
        self.ppci["et"] = None

        # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
        self.ppc = _copy_results_ppci_to_ppc(self.ppci, self.ppc,
                                             options["mode"])

        # raise if PF was not successful. If DC -> success is always 1
        if self.ppc["success"] != 1:
            _clean_up(net, res=False)
        else:
            net["_ppc"] = self.ppc
            net["converged"] = True

        self.V = V

        _extract_results(net, self.ppc)

        return net
예제 #23
0
def _runpppf(net, **kwargs):
    """
    Gets called by runpp or rundcpp with different arguments.
    """

    # get infos from options
    init = net["_options"]["init"]
    ac = net["_options"]["ac"]
    recycle = net["_options"]["recycle"]
    numba = net["_options"]["numba"]
    enforce_q_lims = net["_options"]["enforce_q_lims"]
    tolerance_kva = net["_options"]["tolerance_kva"]
    mode = net["_options"]["mode"]
    algorithm = net["_options"]["algorithm"]
    max_iteration = net["_options"]["max_iteration"]

    net["converged"] = False
    _add_auxiliary_elements(net)

    if (ac and not init == "results") or not ac:
        reset_results(net)

    # select elements in service (time consuming, so we do it once)
    net["_is_elems"] = _select_is_elements(net, recycle)

    if recycle["ppc"] and "_ppc" in net and net[
            "_ppc"] is not None and "_pd2ppc_lookups" in net:
        # update the ppc from last cycle
        ppc, ppci = _update_ppc(net, recycle)
    else:
        # convert pandapower net to ppc
        ppc, ppci = _pd2ppc(net)

    # store variables
    net["_ppc"] = ppc

    if not "VERBOSE" in kwargs:
        kwargs["VERBOSE"] = 0

    # run the powerflow

    # algorithms implemented within pypower
    algorithm_pypower_dict = {'nr': 1, 'fdBX': 2, 'fdXB': 3, 'gs': 4}

    if algorithm == 'fbsw':  # foreward/backward sweep power flow algorithm
        result = _run_fbsw_ppc(ppci,
                               ppopt=ppoption(ENFORCE_Q_LIMS=enforce_q_lims,
                                              PF_TOL=tolerance_kva * 1e-3,
                                              PF_MAX_IT_GS=max_iteration,
                                              **kwargs))[0]

    elif algorithm in algorithm_pypower_dict:
        ppopt = ppoption(**kwargs)
        ppopt['PF_ALG'] = algorithm_pypower_dict[algorithm]
        ppopt['ENFORCE_Q_LIMS'] = enforce_q_lims
        ppopt['PF_TOL'] = tolerance_kva
        if max_iteration is not None:
            if algorithm == 'nr':
                ppopt['PF_MAX_IT'] = max_iteration
            elif algorithm == 'gs':
                ppopt['PF_MAX_IT_GS'] = max_iteration
            else:
                ppopt['PF_MAX_IT_FD'] = max_iteration

        result = _runpf(ppci,
                        init,
                        ac,
                        numba,
                        recycle,
                        ppopt=ppoption(ENFORCE_Q_LIMS=enforce_q_lims,
                                       PF_TOL=tolerance_kva * 1e-3,
                                       **kwargs))[0]

    else:
        AlgorithmUnknown("Algorithm {0} is unknown!".format(algorithm))

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    result = _copy_results_ppci_to_ppc(result, ppc, mode)

    # raise if PF was not successful. If DC -> success is always 1
    if result["success"] != 1:
        raise LoadflowNotConverged("Loadflow did not converge!")
    else:
        net["_ppc"] = result
        net["converged"] = True

    _extract_results(net, result)
    _clean_up(net)
예제 #24
0
def _optimal_powerflow(net, verbose, suppress_warnings, **kwargs):
    ac = net["_options"]["ac"]
    init = net["_options"]["init"]

    ppopt = ppoption(VERBOSE=verbose,
                     OPF_FLOW_LIM=2,
                     PF_DC=not ac,
                     INIT=init,
                     **kwargs)
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)
    reset_results(net, all_empty=False)

    ppc, ppci = _pd2ppc(net)

    if not ac:
        ppci["bus"][:, VM] = 1.0
    net["_ppc_opf"] = ppci
    if len(net.dcline) > 0:
        ppci = add_userfcn(ppci,
                           'formulation',
                           _add_dcline_constraints,
                           args=net)

    if init == "pf":
        ppci = _run_pf_before_opf(net, ppci)
    if suppress_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            result = opf(ppci, ppopt)
    else:
        result = opf(ppci, ppopt)


#    net["_ppc_opf"] = result

    if verbose:
        ppopt['OUT_ALL'] = 1
        printpf(baseMVA=result["baseMVA"],
                bus=result["bus"],
                gen=result["gen"],
                fd=stdout,
                branch=result["branch"],
                success=result["success"],
                et=result["et"],
                ppopt=ppopt)

    if verbose:
        ppopt['OUT_ALL'] = 1
        printpf(baseMVA=result["baseMVA"],
                bus=result["bus"],
                gen=result["gen"],
                fd=stdout,
                branch=result["branch"],
                success=result["success"],
                et=result["et"],
                ppopt=ppopt)

    if not result["success"]:
        raise OPFNotConverged("Optimal Power Flow did not converge!")

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    mode = net["_options"]["mode"]
    result = _copy_results_ppci_to_ppc(result, ppc, mode=mode)

    #    net["_ppc_opf"] = result
    net["OPF_converged"] = True
    _extract_results(net, result)
    _clean_up(net)
예제 #25
0
def runpp_3ph(net,
              calculate_voltage_angles=True,
              init="auto",
              max_iteration="auto",
              tolerance_mva=1e-8,
              trafo_model='t',
              trafo_loading="current",
              enforce_q_lims=False,
              numba=True,
              recycle=None,
              check_connectivity=True,
              switch_rx_ratio=2.0,
              delta_q=0,
              v_debug=False,
              **kwargs):
    """
 runpp_3ph: Performs Unbalanced/Asymmetric/Three Phase Load flow

    INPUT:
        **net** - The pandapower format network

    OPTIONAL:
        **algorithm** (str, "nr") - algorithm that is used to solve the power
        flow problem.

            The following algorithms are available:

                - "nr" Newton-Raphson (pypower implementation with numba accelerations)

                Used only for positive sequence network

                Zero and Negative sequence networks use Current Injection method

                Vnew = Y.inv * Ispecified ( from s_abc/v_abc old)

                Icalculated = Y * Vnew


        **calculate_voltage_angles** (bool, "auto") - consider voltage angles
        in loadflow calculation

            If True, voltage angles of ext_grids and transformer shifts are
            considered in the loadflow calculation. Considering the voltage
            angles is only necessary in meshed networks that are usually
            found in higher voltage levels. calculate_voltage_angles
            in "auto" mode defaults to:

                - True, if the network voltage level is above 70 kV
                - False otherwise

            The network voltage level is defined as the maximum rated voltage
            of any bus in the network that is connected to a line.


        **max_iteration** (int, "auto") - maximum number of iterations carried
        out in the power flow algorithm.

            In "auto" mode, the default value depends on the power flow solver:

                - 10 for "nr"

            For three phase calculations, its extended to 3 * max_iteration

        **tolerance_mva** (float, 1e-8) - loadflow termination condition
        referring to P / Q mismatch of node power in MVA

        **trafo_model**

            - transformer equivalent models
            - "t" - transformer is modeled as equivalent with the T-model.
            - "pi" - This is not recommended, since it is less exact than the T-model. So, for three phase load flow, its not implemented


        **trafo_loading** (str, "current") - mode of calculation for
        transformer loading

            Transformer loading can be calculated relative to the rated
            current or the rated power. In both cases the overall transformer
            loading is defined as the maximum loading on the two sides of
            the transformer.

            - "current"- transformer loading is given as ratio of current
                        flow and rated current of the transformer. This is the recommended
                        setting, since thermal as well as magnetic effects in the
                        transformer depend on the current.
            - "power" - transformer loading is given as ratio of apparent
                        power flow to the rated apparent power of the transformer.

        **enforce_q_lims** (bool, False) (Not tested with 3 Phase load flow)
        - respect generator reactive power limits

            If True, the reactive power limits in net.gen.max_q_mvar/min_q_mvar
            are respected in the loadflow. This is done by running a second
            loadflow if reactive power limits are violated at any generator,
            so that the runtime for the loadflow will increase if reactive
            power has to be curtailed.

            Note: enforce_q_lims only works if algorithm="nr"!


        **check_connectivity** (bool, True) - Perform an extra connectivity
        test after the conversion from pandapower to PYPOWER.

            If True, an extra connectivity test based on SciPy Compressed
            Sparse Graph Routines is perfomed. If check finds unsupplied buses,
            they are set out of service in the ppc

        **voltage_depend_loads** (bool, True)
        (Not tested with 3 Phase load flow) - consideration of voltage-dependent loads.

            If False, ``net.load.const_z_percent`` and ``net.load.const_i_percent``
            are not considered, i.e. ``net.load.p_mw`` and ``net.load.q_mvar``
            are considered as constant-power loads.

        **consider_line_temperature** (bool, False) (Not tested with 3 Phase
        load flow) - adjustment of line impedance based on provided line temperature.

            If True, ``net.line`` must contain a column ``temperature_degree_celsius``.
            The temperature dependency coefficient alpha must be provided in
            the ``net.line.alpha`` column, otherwise the default value of 0.004 is used.


        **KWARGS**:

        **numba** (bool, True) - Activation of numba JIT compiler in the
        newton solver

            If set to True, the numba JIT compiler is used to generate
            matrices for the powerflow, which leads to significant speed
            improvements.

        **switch_rx_ratio** (float, 2)

        (Not tested with 3 Phase load flow)  - rx_ratio of bus-bus-switches.
        If impedance is zero, buses connected by a closed bus-bus switch
        are fused to model an ideal bus. Otherwise, they are modelled
        as branches with resistance defined as z_ohm column in switch
        table and this parameter

        **delta_q**

        (Not tested with 3 Phase load flow) - Reactive power tolerance for option "enforce_q_lims"
        in kvar - helps convergence in some cases.

        **trafo3w_losses**

        (Not tested with 3 Phase load flow) - defines where open loop losses of three-winding
        transformers are considered. Valid options are "hv", "mv", "lv"
        for HV/MV/LV side or "star" for the star point.

        **v_debug** (bool, False) (Not tested with 3 Phase load flow) - if True,
        voltage values in each newton-raphson iteration are logged in the ppc.

        **init_vm_pu** (string/float/array/Series, None) (Not tested with 3
        Phase load flow) - Allows to define initialization specifically for
        voltage magnitudes. Only works with ``init == "auto"``!

            - "auto": all buses are initialized with the mean value of all
              voltage controlled elements in the grid
            - "flat" for flat start from 1.0
            - "results": voltage magnitude vector is taken from result table
            - a float with which all voltage magnitudes are initialized
            - an iterable with a voltage magnitude value for each bus
              (length and order has to match with the buses in net.bus)
            - a pandas Series with a voltage magnitude value for each bus
              (indexes have to match the indexes in net.bus)

         **init_va_degree** (string/float/array/Series, None) (Not tested with
         3 Phase load flow) - Allows to define initialization specifically for voltage angles.
         Only works with ``init == "auto"``!

            - "auto": voltage angles are initialized from DC power flow
              if angles are calculated or as 0 otherwise
            - "dc": voltage angles are initialized from DC power flow
            - "flat" for flat start from 0
            - "results": voltage angle vector is taken from result table
            - a float with which all voltage angles are initialized
            - an iterable with a voltage angle value for each bus (length
              and order has to match with the buses in net.bus)
            - a pandas Series with a voltage angle value for each bus (indexes
              have to match the indexes in net.bus)

        **recycle** (dict, none) - Reuse of internal powerflow variables for
        time series calculation.

            Contains a dict with the following parameters:
            bus_pq: If True PQ values of buses are updated

            gen: If True Sbus and the gen table in the ppc are recalculated

            Ybus: If True the admittance matrix (Ybus, Yf, Yt) is taken from

            ppc["internal"] and not reconstructed

        **neglect_open_switch_branches** (bool, False)

        (Not tested with 3 Phase load flow) - If True no auxiliary
        buses are created for branches when switches are opened at the branch.
        Instead branches are set out of service

    SEE ALSO:
         pp.add_zero_impedance_parameters(net):
         To add zero sequence parameters into network from the standard type

    EXAMPLES:
        Use this module like this:

        .. code-block:: python

            from pandapower.pf.runpp_3ph import runpp_3ph
            runpp_3ph(net)

    NOTES:
        - Three phase load flow uses Sequence Frame for power flow solution.
        - Three phase system is modelled with earth return.
        - PH-E load type is called as wye since Neutral and Earth are considered same
        - This solver has proved successful only for Earthed transformers (i.e Dyn,Yyn,YNyn & Yzn vector groups)
    """
    # =============================================================================
    # pandapower settings
    # =============================================================================
    overrule_options = {}
    if "user_pf_options" in net.keys() and len(net.user_pf_options) > 0:
        passed_parameters = _passed_runpp_parameters(locals())
        overrule_options = {
            key: val
            for key, val in net.user_pf_options.items()
            if key not in passed_parameters.keys()
        }
    if numba:
        numba = _check_if_numba_is_installed(numba)

    ac = True
    mode = "pf_3ph"  # TODO: Make valid modes (pf, pf_3ph, se, etc.) available in seperate file (similar to idx_bus.py)
    #    v_debug = kwargs.get("v_debug", False)
    copy_constraints_to_ppc = False
    if trafo_model == 'pi':
        raise Not_implemented("Three phase Power Flow doesnot support pi model\
                                because of lack of accuracy")


#    if calculate_voltage_angles == "auto":
#        calculate_voltage_angles = False
#        hv_buses = np.where(net.bus.vn_kv.values > 70)[0]  # Todo: Where does that number come from?
#        if len(hv_buses) > 0:
#            line_buses = net.line[["from_bus", "to_bus"]].values.flatten()
#            if len(set(net.bus.index[hv_buses]) & set(line_buses)) > 0:
# scipy spsolve options in NR power flow
    use_umfpack = kwargs.get("use_umfpack", True)
    permc_spec = kwargs.get("permc_spec", None)
    calculate_voltage_angles = True
    if init == "results" and net.res_bus_3ph.empty:
        init = "auto"
    if init == "auto":
        init = "dc" if calculate_voltage_angles else "flat"
    default_max_iteration = {
        "nr": 10,
        "bfsw": 10,
        "gs": 10000,
        "fdxb": 30,
        "fdbx": 30
    }
    if max_iteration == "auto":
        max_iteration = default_max_iteration["nr"]

    neglect_open_switch_branches = kwargs.get("neglect_open_switch_branches",
                                              False)
    only_v_results = kwargs.get("only_v_results", False)
    net._options = {}
    _add_ppc_options(net, calculate_voltage_angles=calculate_voltage_angles,
                     trafo_model=trafo_model, check_connectivity=check_connectivity,
                     mode=mode, switch_rx_ratio=switch_rx_ratio,
                     init_vm_pu=init, init_va_degree=init,
                     enforce_q_lims=enforce_q_lims, recycle=None,
                     voltage_depend_loads=False, delta=delta_q,\
                     neglect_open_switch_branches=neglect_open_switch_branches
                     )
    _add_pf_options(net, tolerance_mva=tolerance_mva, trafo_loading=trafo_loading,
                    numba=numba, ac=ac, algorithm="nr", max_iteration=max_iteration,\
                    only_v_results=only_v_results,v_debug=v_debug, use_umfpack=use_umfpack,
                    permc_spec=permc_spec)
    net._options.update(overrule_options)
    _check_bus_index_and_print_warning_if_high(net)
    _check_gen_index_and_print_warning_if_high(net)
    # =========================================================================
    # pd2ppc conversion
    # =========================================================================
    _, ppci1 = _pd2ppc_recycle(net, 1, recycle=recycle)

    _, ppci2 = _pd2ppc_recycle(net, 2, recycle=recycle)
    gs_eg, bs_eg = _add_ext_grid_sc_impedance(net, ppci2)

    _, ppci0 = _pd2ppc_recycle(net, 0, recycle=recycle)

    _, bus0, gen0, branch0, _, _, _ = _get_pf_variables_from_ppci(ppci0)
    base_mva, bus1, gen1, branch1, sl_bus, _, pq_bus = _get_pf_variables_from_ppci(
        ppci1)
    _, bus2, gen2, branch2, _, _, _ = _get_pf_variables_from_ppci(ppci2)

    # initialize the results after the conversion to ppc is done, otherwise init=results does not work
    init_results(net, "pf_3ph")

    # =============================================================================
    #     P Q values aggragated and summed up for each bus to make s_abc matrix
    #     s_abc for wye connections ; s_abc_delta for delta connection
    # =============================================================================
    s_abc_delta, s_abc = _load_mapping(net, ppci1)
    # =========================================================================
    # Construct Sequence Frame Bus admittance matrices Ybus
    # =========================================================================

    ppci0, ppci1, ppci2, y_0_pu, y_1_pu, y_2_pu, y_0_f, y_1_f, _,\
        y_0_t, y_1_t, _ = _get_y_bus(ppci0, ppci1, ppci2, recycle)
    # =========================================================================
    # Initial voltage values
    # =========================================================================
    nb = ppci1["bus"].shape[0]

    # make sure flat start is always respected, even with other voltage data in recycled ppc
    if init == "flat":
        v_012_it = np.zeros((3, nb), dtype=np.complex128)
        v_012_it[1, :] = 1.0
    else:
        v_012_it = np.concatenate([
            np.array(ppc["bus"][:, VM] *
                     np.exp(1j * np.deg2rad(ppc["bus"][:, VA]))).reshape(
                         (1, nb)) for ppc in (ppci0, ppci1, ppci2)
        ],
                                  axis=0).astype(np.complex128)

    # For Delta transformation:
    # Voltage changed from line-earth to line-line using V_T
    # s_abc/v_abc will now give line-line currents. This is converted to line-earth
    # current using I-T
    v_del_xfmn = np.array([[1, -1, 0], [0, 1, -1], [-1, 0, 1]])
    i_del_xfmn = np.array([[1, 0, -1], [-1, 1, 0], [0, -1, 1]])
    v_abc_it = sequence_to_phase(v_012_it)

    # =========================================================================
    #             Iteration using Power mismatch criterion
    # =========================================================================
    outer_tolerance_mva = 3e-8
    count = 0
    s_mismatch = np.array([[True], [True]], dtype=bool)
    t0 = perf_counter()
    while (s_mismatch >
           outer_tolerance_mva).any() and count < 30 * max_iteration:
        # =====================================================================
        #     Voltages and Current transformation for PQ and Slack bus
        # =====================================================================
        s_abc_pu = -np.divide(s_abc, ppci1["baseMVA"])
        s_abc_delta_pu = -np.divide(s_abc_delta, ppci1["baseMVA"])

        i_abc_it_wye = (np.divide(s_abc_pu, v_abc_it)).conjugate()
        i_abc_it_delta = np.matmul(i_del_xfmn, (np.divide(
            s_abc_delta_pu, np.matmul(v_del_xfmn, v_abc_it))).conjugate())

        # For buses with both delta and wye loads we need to sum of their currents
        # to sum up the currents
        i_abc_it = i_abc_it_wye + i_abc_it_delta
        i012_it = phase_to_sequence(i_abc_it)
        v1_for_s1 = v_012_it[1, :]
        i1_for_s1 = -i012_it[1, :]
        v0_pu_it = X012_to_X0(v_012_it)
        v2_pu_it = X012_to_X2(v_012_it)
        i0_pu_it = X012_to_X0(i012_it)
        i2_pu_it = X012_to_X2(i012_it)
        s1 = np.multiply(v1_for_s1, i1_for_s1.conjugate())
        # =============================================================================
        # Current used to find S1 Positive sequence power
        # =============================================================================

        ppci1["bus"][pq_bus, PD] = np.real(s1[pq_bus]) * ppci1["baseMVA"]
        ppci1["bus"][pq_bus, QD] = np.imag(s1[pq_bus]) * ppci1["baseMVA"]
        # =============================================================================
        # Conduct Positive sequence power flow
        # =============================================================================
        _run_newton_raphson_pf(ppci1, net._options)
        # =============================================================================
        # Conduct Negative and Zero sequence power flow
        # =============================================================================
        v0_pu_it = V_from_I(y_0_pu, i0_pu_it)
        v2_pu_it = V_from_I(y_2_pu, i2_pu_it)
        # =============================================================================
        #    Evaluate Positive Sequence Power Mismatch
        # =============================================================================
        i1_from_v_it = I1_from_V012(v_012_it, y_1_pu).flatten()
        s_from_voltage = S_from_VI_elementwise(v1_for_s1, i1_from_v_it)
        v1_pu_it = V1_from_ppc(ppci1)

        v_012_new = combine_X012(v0_pu_it, v1_pu_it, v2_pu_it)

        s_mismatch = np.abs(
            np.abs(s1[pq_bus]) - np.abs(s_from_voltage[pq_bus]))
        v_012_it = v_012_new
        v_abc_it = sequence_to_phase(v_012_it)
        count += 1
    et = perf_counter() - t0
    success = (count < 30 * max_iteration)
    for ppc in [ppci0, ppci1, ppci2]:
        ppc["et"] = et
        ppc["success"] = success
    # TODO: Add reference to paper to explain the following steps
    # This is required since the ext_grid power results are not correct if its
    # not done
    ref, pv, pq = bustypes(ppci0["bus"], ppci0["gen"])
    ref_gens = ppci0["internal"]["ref_gens"]
    ppci0["bus"][ref, GS] -= gs_eg
    ppci0["bus"][ref, BS] -= bs_eg
    y_0_pu, y_0_f, y_0_t = makeYbus(ppci0["baseMVA"], ppci0["bus"],
                                    ppci0["branch"])
    # revert the change, otherwise repeated calculation with recycled elements will fail
    ppci0["bus"][ref, GS] += gs_eg
    ppci0["bus"][ref, BS] += bs_eg
    # Bus, Branch, and Gen  power values
    bus0, gen0, branch0 = pfsoln(base_mva, bus0, gen0, branch0, y_0_pu, y_0_f,
                                 y_0_t, v_012_it[0, :].flatten(), sl_bus,
                                 ref_gens)
    bus1, gen1, branch1 = pfsoln(base_mva, bus1, gen1, branch1, y_1_pu, y_1_f,
                                 y_1_t, v_012_it[1, :].flatten(), sl_bus,
                                 ref_gens)
    bus2, gen2, branch2 = pfsoln(base_mva, bus2, gen2, branch2, y_1_pu, y_1_f,
                                 y_1_t, v_012_it[2, :].flatten(), sl_bus,
                                 ref_gens)
    ppci0 = _store_results_from_pf_in_ppci(ppci0, bus0, gen0, branch0)
    ppci1 = _store_results_from_pf_in_ppci(ppci1, bus1, gen1, branch1)
    ppci2 = _store_results_from_pf_in_ppci(ppci2, bus2, gen2, branch2)
    i_012_res = _current_from_voltage_results(y_0_pu, y_1_pu, v_012_it)
    s_012_res = S_from_VI_elementwise(v_012_it, i_012_res) * ppci1["baseMVA"]
    eg_is_mask = net["_is_elements"]['ext_grid']
    ext_grid_lookup = net["_pd2ppc_lookups"]["ext_grid"]
    eg_is_idx = net["ext_grid"].index.values[eg_is_mask]
    eg_idx_ppc = ext_grid_lookup[eg_is_idx]
    """ # 2 ext_grids Fix: Instead of the generator index, bus indices of the generators are used"""
    eg_bus_idx_ppc = np.real(ppci1["gen"][eg_idx_ppc, GEN_BUS]).astype(int)

    ppci0["gen"][eg_idx_ppc, PG] = s_012_res[0, eg_bus_idx_ppc].real
    ppci1["gen"][eg_idx_ppc, PG] = s_012_res[1, eg_bus_idx_ppc].real
    ppci2["gen"][eg_idx_ppc, PG] = s_012_res[2, eg_bus_idx_ppc].real
    ppci0["gen"][eg_idx_ppc, QG] = s_012_res[0, eg_bus_idx_ppc].imag
    ppci1["gen"][eg_idx_ppc, QG] = s_012_res[1, eg_bus_idx_ppc].imag
    ppci2["gen"][eg_idx_ppc, QG] = s_012_res[2, eg_bus_idx_ppc].imag

    ppc0 = net["_ppc0"]
    ppc1 = net["_ppc1"]
    ppc2 = net["_ppc2"]

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    ppc0 = _copy_results_ppci_to_ppc(ppci0, ppc0, mode=mode)
    ppc1 = _copy_results_ppci_to_ppc(ppci1, ppc1, mode=mode)
    ppc2 = _copy_results_ppci_to_ppc(ppci2, ppc2, mode=mode)

    _extract_results_3ph(net, ppc0, ppc1, ppc2)

    #    Raise error if PF was not successful. If DC -> success is always 1

    if not ppci0["success"]:
        net["converged"] = False
        _clean_up(net, res=False)
        raise LoadflowNotConverged("Power Flow {0} did not converge after\
                                {1} iterations!".format("nr", count))
    else:
        net["converged"] = True

    _clean_up(net)
예제 #26
0
    def estimate(self,
                 v_start='flat',
                 delta_start='flat',
                 calculate_voltage_angles=True,
                 zero_injection=None,
                 fuse_buses_with_bb_switch='all'):
        """
        The function estimate is the main function of the module. It takes up to three input
        arguments: v_start, delta_start and calculate_voltage_angles. The first two are the initial
        state variables for the estimation process. Usually they can be initialized in a
        "flat-start" condition: All voltages being 1.0 pu and all voltage angles being 0 degrees.
        In this case, the parameters can be left at their default values (None). If the estimation
        is applied continuously, using the results from the last estimation as the starting
        condition for the current estimation can decrease the  amount of iterations needed to
        estimate the current state. The third parameter defines whether all voltage angles are
        calculated absolutely, including phase shifts from transformers. If only the relative
        differences between buses are required, this parameter can be set to False. Returned is a
        boolean value, which is true after a successful estimation and false otherwise.
        The resulting complex voltage will be written into the pandapower network. The result
        fields are found res_bus_est of the pandapower network.

        INPUT:
            **net** - The net within this line should be created

            **v_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage magnitudes in p.u. (sorted by bus index)

            **delta_start** (np.array, shape=(1,), optional) - Vector with initial values for all
            voltage angles in degrees (sorted by bus index)

        OPTIONAL:
            **calculate_voltage_angles** - (bool) - Take into account absolute voltage angles and
            phase shifts in transformers Default is True
            
            **zero_injection** - (str, iterable, None) - Defines which buses are zero injection bus or the method
            to identify zero injection bus, with 'wls_estimator' virtual measurements will be added, with 
            'wls_estimator with zero constraints' the buses will be handled as constraints
            "auto": all bus without p,q measurement, without p, q value (load, sgen...) and aux buses will be
                identified as zero injection bus  
            "aux_bus": only aux bus will be identified as zero injection bus
            None: no bus will be identified as zero injection bus
            iterable: the iterable should contain index of the zero injection bus and also aux bus will be identified
                as zero-injection bus
    
            **fuse_buses_with_bb_switch** - (str, iterable, None) - Defines how buses with closed bb switches should 
            be handled, if fuse buses will only fused to one for calculation, if not fuse, an auxiliary bus and 
            auxiliary line will be automatically added to the network to make the buses with different p,q injection
            measurements identifieble
            "all": all buses with bb-switches will be fused, the same as the default behaviour in load flow
            None: buses with bb-switches and individual p,q measurements will be reconfigurated
                by auxiliary elements
            iterable: the iterable should contain the index of buses to be fused, the behaviour is contigous e.g.
                if one of the bus among the buses connected through bb switch is given, then all of them will still
                be fused
        OUTPUT:
            **successful** (boolean) - True if the estimation process was successful

        Optional estimation variables:
            The bus power injections can be accessed with *se.s_node_powers* and the estimated
            values corresponding to the (noisy) measurement values with *se.hx*. (*hx* denotes h(x))

        EXAMPLE:
            success = estimate(np.array([1.0, 1.0, 1.0]), np.array([0.0, 0.0, 0.0]))

        """
        if self.net is None:
            raise UserWarning("Component was not initialized with a network.")
        t0 = time()

        # change the configuration of the pp net to avoid auto fusing of buses connected
        # through bb switch with elements on each bus if this feature enabled
        bus_to_be_fused = None
        if fuse_buses_with_bb_switch != 'all' and not self.net.switch.empty:
            if isinstance(fuse_buses_with_bb_switch, str):
                raise UserWarning(
                    "fuse_buses_with_bb_switch parameter is not correctly initialized"
                )
            elif hasattr(fuse_buses_with_bb_switch, '__iter__'):
                bus_to_be_fused = fuse_buses_with_bb_switch
            _add_aux_elements_for_bb_switch(self.net, bus_to_be_fused)

        # add initial values for V and delta
        # node voltages
        # V<delta
        if v_start is None:
            v_start = "flat"
        if delta_start is None:
            delta_start = "flat"

        # initialize result tables if not existent
        _copy_power_flow_results(self.net)

        # initialize ppc
        ppc, ppci = _init_ppc(self.net, v_start, delta_start,
                              calculate_voltage_angles)

        # add measurements to ppci structure
        ppci = _add_measurements_to_ppc(self.net, ppci, zero_injection)

        # Finished converting pandapower network to ppci
        # Estimate voltage magnitude and angle with the given estimator
        delta, v_m = self.estimator.estimate(ppci)

        # store results for all elements
        # calculate bus power injections
        v_cpx = v_m * np.exp(1j * delta)
        bus_powers_conj = np.zeros(len(v_cpx), dtype=np.complex128)
        for i in range(len(v_cpx)):
            bus_powers_conj[i] = np.dot(ppci['internal']['Y_bus'][i, :],
                                        v_cpx) * np.conjugate(v_cpx[i])

        ppci["bus"][:, 2] = bus_powers_conj.real  # saved in per unit
        ppci["bus"][:, 3] = -bus_powers_conj.imag  # saved in per unit
        ppci["bus"][:, 7] = v_m
        ppci["bus"][:, 8] = delta * 180 / np.pi  # convert to degree

        # calculate line results (in ppc_i)
        s_ref, bus, gen, branch = _get_pf_variables_from_ppci(ppci)[0:4]
        out = np.flatnonzero(branch[:,
                                    BR_STATUS] == 0)  # out-of-service branches
        br = np.flatnonzero(branch[:, BR_STATUS]).astype(
            int)  # in-service branches
        # complex power at "from" bus
        Sf = v_cpx[np.real(branch[br, F_BUS]).astype(int)] * np.conj(
            ppci['internal']['Yf'][br, :] * v_cpx) * s_ref
        # complex power injected at "to" bus
        St = v_cpx[np.real(branch[br, T_BUS]).astype(int)] * np.conj(
            ppci['internal']['Yt'][br, :] * v_cpx) * s_ref
        branch[np.ix_(br, [PF, QF, PT, QT])] = np.c_[Sf.real, Sf.imag, St.real,
                                                     St.imag]
        branch[np.ix_(out, [PF, QF, PT, QT])] = np.zeros((len(out), 4))
        et = time() - t0
        ppci = _store_results_from_pf_in_ppci(ppci, bus, gen, branch,
                                              self.estimator.successful,
                                              self.estimator.iterations, et)

        # convert to pandapower indices
        ppc = _copy_results_ppci_to_ppc(ppci, ppc, mode="se")

        # extract results from ppc
        _add_pf_options(self.net,
                        tolerance_mva=1e-8,
                        trafo_loading="current",
                        numba=True,
                        ac=True,
                        algorithm='nr',
                        max_iteration="auto")
        # writes res_bus.vm_pu / va_degree and res_line
        _extract_results_se(self.net, ppc)

        # restore backup of previous results
        _rename_results(self.net)

        # additionally, write bus power injection results (these are not written in _extract_results)
        mapping_table = self.net["_pd2ppc_lookups"]["bus"]
        self.net.res_bus_est.p_mw = -get_values(
            ppc["bus"][:, 2], self.net.bus.index.values, mapping_table)
        self.net.res_bus_est.q_mvar = -get_values(
            ppc["bus"][:, 3], self.net.bus.index.values, mapping_table)
        _clean_up(self.net)
        # clear the aux elements and calculation results created for the substitution of bb switches
        if fuse_buses_with_bb_switch != 'all' and not self.net.switch.empty:
            _drop_aux_elements_for_bb_switch(self.net)

        # delete results which are not correctly calculated
        for k in list(self.net.keys()):
            if k.startswith("res_") and k.endswith("_est") and \
                    k not in ("res_bus_est", "res_line_est", "res_trafo_est", "res_trafo3w_est"):
                del self.net[k]

        return self.estimator.successful
예제 #27
0
def _optimal_powerflow(net, verbose, suppress_warnings, **kwargs):
    ac = net["_options"]["ac"]
    init = net["_options"]["init"]

    if "OPF_FLOW_LIM" not in kwargs:
        kwargs["OPF_FLOW_LIM"] = 2

    if net["_options"]["voltage_depend_loads"] and not (
            allclose(net.load.const_z_percent.values, 0)
            and allclose(net.load.const_i_percent.values, 0)):
        logger.error(
            "pandapower optimal_powerflow does not support voltage depend loads."
        )

    ppopt = ppoption(VERBOSE=verbose, PF_DC=not ac, INIT=init, **kwargs)
    net["OPF_converged"] = False
    net["converged"] = False
    _add_auxiliary_elements(net)

    if not ac or net["_options"]["init_results"]:
        verify_results(net)
    else:
        init_results(net, "opf")

    ppc, ppci = _pd2ppc(net)

    if not ac:
        ppci["bus"][:, VM] = 1.0
    net["_ppc_opf"] = ppci
    if len(net.dcline) > 0:
        ppci = add_userfcn(ppci,
                           'formulation',
                           _add_dcline_constraints,
                           args=net)

    if init == "pf":
        ppci = _run_pf_before_opf(net, ppci)
    if suppress_warnings:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            result = opf(ppci, ppopt)
    else:
        result = opf(ppci, ppopt)


#    net["_ppc_opf"] = result

    if verbose:
        ppopt['OUT_ALL'] = 1
        printpf(baseMVA=result["baseMVA"],
                bus=result["bus"],
                gen=result["gen"],
                branch=result["branch"],
                f=result["f"],
                success=result["success"],
                et=result["et"],
                fd=stdout,
                ppopt=ppopt)

    if not result["success"]:
        raise OPFNotConverged("Optimal Power Flow did not converge!")

    # ppci doesn't contain out of service elements, but ppc does -> copy results accordingly
    mode = net["_options"]["mode"]
    result = _copy_results_ppci_to_ppc(result, ppc, mode=mode)

    #    net["_ppc_opf"] = result
    net["OPF_converged"] = True
    _extract_results(net, result)
    _clean_up(net)
예제 #28
0
 def cleanup(self):
     _clean_up(self.net)
     self.init_newton_variables()