예제 #1
0
    def test_str_label_slicing_with_negative_step(self, idx):
        SLC = pd.IndexSlice

        idx = Index(idx)
        ser = Series(np.arange(20), index=idx)
        tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] :: -1], SLC[9::-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[: idx[9] : -1], SLC[:8:-1])
        tm.assert_indexing_slices_equivalent(
            ser, SLC[idx[13] : idx[9] : -1], SLC[13:8:-1]
        )
        tm.assert_indexing_slices_equivalent(ser, SLC[idx[9] : idx[13] : -1], SLC[:0])
예제 #2
0
def test_slice_with_negative_step(index):
    keystr1 = str(index[9])
    keystr2 = str(index[13])

    ser = Series(np.arange(20), index)
    SLC = IndexSlice

    for key in [keystr1, index[9]]:
        tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1])

        for key2 in [keystr2, index[13]]:
            tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1])
            tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1])
예제 #3
0
    def test_str_label_slicing_with_negative_step(self):
        SLC = pd.IndexSlice

        for idx in [
                _mklbl("A", 20),
                np.arange(20) + 100,
                np.linspace(100, 150, 20)
        ]:
            idx = Index(idx)
            ser = Series(np.arange(20), index=idx)
            tm.assert_indexing_slices_equivalent(ser, SLC[idx[9]::-1],
                                                 SLC[9::-1])
            tm.assert_indexing_slices_equivalent(ser, SLC[:idx[9]:-1],
                                                 SLC[:8:-1])
            tm.assert_indexing_slices_equivalent(ser, SLC[idx[13]:idx[9]:-1],
                                                 SLC[13:8:-1])
            tm.assert_indexing_slices_equivalent(ser, SLC[idx[9]:idx[13]:-1],
                                                 SLC[:0])
예제 #4
0
파일: test_slice.py 프로젝트: tnir/pandas
    def test_multiindex_label_slicing_with_negative_step(self):
        ser = Series(np.arange(20),
                     MultiIndex.from_product([list("abcde"),
                                              np.arange(4)]))
        SLC = pd.IndexSlice

        tm.assert_indexing_slices_equivalent(ser, SLC[::-1], SLC[::-1])

        tm.assert_indexing_slices_equivalent(ser, SLC["d"::-1], SLC[15::-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[("d", )::-1],
                                             SLC[15::-1])

        tm.assert_indexing_slices_equivalent(ser, SLC[:"d":-1], SLC[:11:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[:("d", ):-1],
                                             SLC[:11:-1])

        tm.assert_indexing_slices_equivalent(ser, SLC["d":"b":-1],
                                             SLC[15:3:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[("d", ):"b":-1],
                                             SLC[15:3:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC["d":("b", ):-1],
                                             SLC[15:3:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[("d", ):("b", ):-1],
                                             SLC[15:3:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC["b":"d":-1], SLC[:0])

        tm.assert_indexing_slices_equivalent(ser, SLC[("c", 2)::-1],
                                             SLC[10::-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[:("c", 2):-1],
                                             SLC[:9:-1])
        tm.assert_indexing_slices_equivalent(ser, SLC[("e", 0):("c", 2):-1],
                                             SLC[16:9:-1])