예제 #1
0
파일: take.py 프로젝트: wkerzendorf/pandas
def take_1d(
    arr: ArrayLike,
    indexer: npt.NDArray[np.intp],
    fill_value=None,
    allow_fill: bool = True,
    mask: npt.NDArray[np.bool_] | None = None,
) -> ArrayLike:
    """
    Specialized version for 1D arrays. Differences compared to `take_nd`:

    - Assumes input array has already been converted to numpy array / EA
    - Assumes indexer is already guaranteed to be intp dtype ndarray
    - Only works for 1D arrays

    To ensure the lowest possible overhead.

    Note: similarly to `take_nd`, this function assumes that the indexer is
    a valid(ated) indexer with no out of bound indices.

    Parameters
    ----------
    arr : np.ndarray or ExtensionArray
        Input array.
    indexer : ndarray
        1-D array of indices to take (validated indices, intp dtype).
    fill_value : any, default np.nan
        Fill value to replace -1 values with
    allow_fill : bool, default True
        If False, indexer is assumed to contain no -1 values so no filling
        will be done.  This short-circuits computation of a mask. Result is
        undefined if allow_fill == False and -1 is present in indexer.
    mask : np.ndarray, optional, default None
        If `allow_fill` is True, and the mask (where indexer == -1) is already
        known, it can be passed to avoid recomputation.
    """
    if not isinstance(arr, np.ndarray):
        # ExtensionArray -> dispatch to their method
        return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)

    if not allow_fill:
        return arr.take(indexer)

    dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
        arr, indexer, fill_value, True, mask)

    # at this point, it's guaranteed that dtype can hold both the arr values
    # and the fill_value
    out = np.empty(indexer.shape, dtype=dtype)

    func = _get_take_nd_function(arr.ndim,
                                 arr.dtype,
                                 out.dtype,
                                 axis=0,
                                 mask_info=mask_info)
    func(arr, indexer, out, fill_value)

    return out
예제 #2
0
파일: take.py 프로젝트: prakhar987/pandas
def take_nd(
    arr: ArrayLike,
    indexer,
    axis: int = 0,
    fill_value=lib.no_default,
    allow_fill: bool = True,
) -> ArrayLike:
    """
    Specialized Cython take which sets NaN values in one pass

    This dispatches to ``take`` defined on ExtensionArrays. It does not
    currently dispatch to ``SparseArray.take`` for sparse ``arr``.

    Note: this function assumes that the indexer is a valid(ated) indexer with
    no out of bound indices.

    Parameters
    ----------
    arr : np.ndarray or ExtensionArray
        Input array.
    indexer : ndarray
        1-D array of indices to take, subarrays corresponding to -1 value
        indices are filed with fill_value
    axis : int, default 0
        Axis to take from
    fill_value : any, default np.nan
        Fill value to replace -1 values with
    allow_fill : bool, default True
        If False, indexer is assumed to contain no -1 values so no filling
        will be done.  This short-circuits computation of a mask.  Result is
        undefined if allow_fill == False and -1 is present in indexer.

    Returns
    -------
    subarray : np.ndarray or ExtensionArray
        May be the same type as the input, or cast to an ndarray.
    """
    if fill_value is lib.no_default:
        fill_value = na_value_for_dtype(arr.dtype, compat=False)

    if not isinstance(arr, np.ndarray):
        # i.e. ExtensionArray,
        # includes for EA to catch DatetimeArray, TimedeltaArray
        if not is_1d_only_ea_obj(arr):
            # i.e. DatetimeArray, TimedeltaArray
            arr = cast("NDArrayBackedExtensionArray", arr)
            return arr.take(indexer,
                            fill_value=fill_value,
                            allow_fill=allow_fill,
                            axis=axis)

        return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)

    arr = np.asarray(arr)
    return _take_nd_ndarray(arr, indexer, axis, fill_value, allow_fill)
예제 #3
0
파일: take.py 프로젝트: burbanom/pandas
def take_1d(
    arr: ArrayLike,
    indexer: np.ndarray,
    fill_value=None,
    allow_fill: bool = True,
) -> ArrayLike:
    """
    Specialized version for 1D arrays. Differences compared to `take_nd`:

    - Assumes input array has already been converted to numpy array / EA
    - Assumes indexer is already guaranteed to be int64 dtype ndarray
    - Only works for 1D arrays

    To ensure the lowest possible overhead.

    Note: similarly to `take_nd`, this function assumes that the indexer is
    a valid(ated) indexer with no out of bound indices.

    TODO(ArrayManager): mainly useful for ArrayManager, otherwise can potentially
    be removed again if we don't end up with ArrayManager.
    """
    if not isinstance(arr, np.ndarray):
        # ExtensionArray -> dispatch to their method

        # error: Argument 1 to "take" of "ExtensionArray" has incompatible type
        # "ndarray"; expected "Sequence[int]"
        return arr.take(
            indexer,  # type: ignore[arg-type]
            fill_value=fill_value,
            allow_fill=allow_fill,
        )

    if not allow_fill:
        return arr.take(indexer)

    indexer, dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
        arr, indexer, None, fill_value, allow_fill)

    # at this point, it's guaranteed that dtype can hold both the arr values
    # and the fill_value
    out = np.empty(indexer.shape, dtype=dtype)

    func = _get_take_nd_function(arr.ndim,
                                 arr.dtype,
                                 out.dtype,
                                 axis=0,
                                 mask_info=mask_info)
    func(arr, indexer, out, fill_value)

    return out
예제 #4
0
파일: take.py 프로젝트: prakhar987/pandas
def take_1d(
    arr: ArrayLike,
    indexer: npt.NDArray[np.intp],
    fill_value=None,
    allow_fill: bool = True,
) -> ArrayLike:
    """
    Specialized version for 1D arrays. Differences compared to `take_nd`:

    - Assumes input array has already been converted to numpy array / EA
    - Assumes indexer is already guaranteed to be intp dtype ndarray
    - Only works for 1D arrays

    To ensure the lowest possible overhead.

    Note: similarly to `take_nd`, this function assumes that the indexer is
    a valid(ated) indexer with no out of bound indices.
    """
    indexer = ensure_platform_int(indexer)

    if not isinstance(arr, np.ndarray):
        # ExtensionArray -> dispatch to their method
        return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)

    if not allow_fill:
        return arr.take(indexer)

    dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
        arr, indexer, fill_value, True)

    # at this point, it's guaranteed that dtype can hold both the arr values
    # and the fill_value
    out = np.empty(indexer.shape, dtype=dtype)

    func = _get_take_nd_function(arr.ndim,
                                 arr.dtype,
                                 out.dtype,
                                 axis=0,
                                 mask_info=mask_info)
    func(arr, indexer, out, fill_value)

    return out
예제 #5
0
파일: take.py 프로젝트: rayev2208/pandas
def take_nd(
    arr: ArrayLike,
    indexer,
    axis: int = 0,
    out: Optional[np.ndarray] = None,
    fill_value=lib.no_default,
    allow_fill: bool = True,
) -> ArrayLike:
    """
    Specialized Cython take which sets NaN values in one pass

    This dispatches to ``take`` defined on ExtensionArrays. It does not
    currently dispatch to ``SparseArray.take`` for sparse ``arr``.

    Parameters
    ----------
    arr : np.ndarray or ExtensionArray
        Input array.
    indexer : ndarray
        1-D array of indices to take, subarrays corresponding to -1 value
        indices are filed with fill_value
    axis : int, default 0
        Axis to take from
    out : ndarray or None, default None
        Optional output array, must be appropriate type to hold input and
        fill_value together, if indexer has any -1 value entries; call
        maybe_promote to determine this type for any fill_value
    fill_value : any, default np.nan
        Fill value to replace -1 values with
    allow_fill : boolean, default True
        If False, indexer is assumed to contain no -1 values so no filling
        will be done.  This short-circuits computation of a mask.  Result is
        undefined if allow_fill == False and -1 is present in indexer.

    Returns
    -------
    subarray : np.ndarray or ExtensionArray
        May be the same type as the input, or cast to an ndarray.
    """
    if fill_value is lib.no_default:
        fill_value = na_value_for_dtype(arr.dtype, compat=False)

    if not isinstance(arr, np.ndarray):
        # i.e. ExtensionArray,
        # includes for EA to catch DatetimeArray, TimedeltaArray
        return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)

    arr = np.asarray(arr)
    return _take_nd_ndarray(arr, indexer, axis, out, fill_value, allow_fill)
예제 #6
0
파일: take.py 프로젝트: zacqed/pandas
def take_1d(
    arr: ArrayLike,
    indexer: np.ndarray,
    fill_value=None,
    allow_fill: bool = True,
) -> ArrayLike:
    """
    Specialized version for 1D arrays. Differences compared to take_nd:

    - Assumes input (arr, indexer) has already been converted to numpy array / EA
    - Only works for 1D arrays

    To ensure the lowest possible overhead.

    TODO(ArrayManager): mainly useful for ArrayManager, otherwise can potentially
    be removed again if we don't end up with ArrayManager.
    """
    if not isinstance(arr, np.ndarray):
        # ExtensionArray -> dispatch to their method
        return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)

    indexer, dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value(
        arr, indexer, 0, None, fill_value, allow_fill)

    # at this point, it's guaranteed that dtype can hold both the arr values
    # and the fill_value
    out = np.empty(indexer.shape, dtype=dtype)

    func = _get_take_nd_function(arr.ndim,
                                 arr.dtype,
                                 out.dtype,
                                 axis=0,
                                 mask_info=mask_info)
    func(arr, indexer, out, fill_value)

    return out