def _shallow_copy(self, values=None, **kwargs): # TODO: simplify, figure out type of values if values is None: values = self._data if isinstance(values, type(self)): values = values._values if not isinstance(values, PeriodArray): if (isinstance(values, np.ndarray) and is_integer_dtype(values.dtype)): values = PeriodArray(values, freq=self.freq) else: # in particular, I would like to avoid period_array here. # Some people seem to be calling use with unexpected types # Index.difference -> ndarray[Period] # DatetimelikeIndexOpsMixin.repeat -> ndarray[ordinal] # I think that once all of Datetime* are EAs, we can simplify # this quite a bit. values = period_array(values, freq=self.freq) # We don't allow changing `freq` in _shallow_copy. validate_dtype_freq(self.dtype, kwargs.get('freq')) attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes)
def _shallow_copy(self, values=None, **kwargs): # TODO: simplify, figure out type of values if values is None: values = self._data if isinstance(values, type(self)): values = values._values if not isinstance(values, PeriodArray): if (isinstance(values, np.ndarray) and is_integer_dtype(values.dtype)): values = PeriodArray(values, freq=self.freq) else: # in particular, I would like to avoid period_array here. # Some people seem to be calling use with unexpected types # Index.difference -> ndarray[Period] # DatetimelikeIndexOpsMixin.repeat -> ndarray[ordinal] # I think that once all of Datetime* are EAs, we can simplify # this quite a bit. values = period_array(values, freq=self.freq) # I don't like overloading shallow_copy with freq changes. # See if it's used anywhere outside of test_resample_empty_dataframe attributes = self._get_attributes_dict() freq = kwargs.pop("freq", None) if freq: values = values.asfreq(freq) attributes.pop("freq", None) attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes)
def __new__( cls, data=None, ordinal=None, freq=None, tz=None, dtype=None, copy=False, name=None, **fields, ): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): argument = list(set(fields) - valid_field_set)[0] raise TypeError(f"__new__() got an unexpected keyword argument {argument}") name = maybe_extract_name(name, data, cls) if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields) # PeriodArray._generate range does validation that fields is # empty when really using the range-based constructor. freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = {'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'} if not set(fields).issubset(valid_field_set): raise TypeError('__new__() got an unexpected keyword argument {}'. format(list(set(fields) - valid_field_set)[0])) if name is None and hasattr(data, 'name'): name = data.name if data is None and ordinal is None: # range-based. if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) data, freq = PeriodArray._generate_range(start, end, periods, freq, fields) data = PeriodArray(data, freq=freq) else: if freq is None and dtype is not None: freq = PeriodDtype(dtype).freq elif freq and dtype: freq = PeriodDtype(freq).freq dtype = PeriodDtype(dtype).freq if freq != dtype: msg = "specified freq and dtype are different" raise IncompatibleFrequency(msg) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = {'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'} if not set(fields).issubset(valid_field_set): raise TypeError('__new__() got an unexpected keyword argument {}'. format(list(set(fields) - valid_field_set)[0])) if name is None and hasattr(data, 'name'): name = data.name if data is None and ordinal is None: # range-based. data, freq = PeriodArray._generate_range(start, end, periods, freq, fields) data = PeriodArray(data, freq=freq) else: freq = dtl.validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): raise TypeError( "__new__() got an unexpected keyword argument {}".format( list(set(fields) - valid_field_set)[0])) if name is None and hasattr(data, "name"): name = data.name if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(start, end, periods, freq, fields) # PeriodArray._generate range does validate that fields is # empty when really using the range-based constructor. if not fields: msg = ("Creating a PeriodIndex by passing range " "endpoints is deprecated. Use " "`pandas.period_range` instead.") # period_range differs from PeriodIndex for cases like # start="2000", periods=4 # PeriodIndex interprets that as A-DEC freq. # period_range interprets it as 'D' freq. cond = freq is None and ( (start and not isinstance(start, Period)) or (end and not isinstance(end, Period))) if cond: msg += (" Note that the default `freq` may differ. Pass " "'freq=\"{}\"' to ensure the same output.").format( freq2.freqstr) warnings.warn(msg, FutureWarning, stacklevel=2) freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = {'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'} if not set(fields).issubset(valid_field_set): raise TypeError('__new__() got an unexpected keyword argument {}'. format(list(set(fields) - valid_field_set)[0])) if name is None and hasattr(data, 'name'): name = data.name if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(start, end, periods, freq, fields) # PeriodArray._generate range does validate that fields is # empty when really using the range-based constructor. if not fields: msg = ("Creating a PeriodIndex by passing range " "endpoints is deprecated. Use " "`pandas.period_range` instead.") # period_range differs from PeriodIndex for cases like # start="2000", periods=4 # PeriodIndex interprets that as A-DEC freq. # period_range interprets it as 'D' freq. cond = ( freq is None and ( (start and not isinstance(start, Period)) or (end and not isinstance(end, Period)) ) ) if cond: msg += ( " Note that the default `freq` may differ. Pass " "'freq=\"{}\"' to ensure the same output." ).format(freq2.freqstr) warnings.warn(msg, FutureWarning, stacklevel=2) freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name)