def test_unstack(self, obj): # GH-13287: can't use base test, since building the expected fails. data = DatetimeArray._from_sequence(['2000', '2001', '2002', '2003'], tz='US/Central') index = pd.MultiIndex.from_product(([['A', 'B'], ['a', 'b']]), names=['a', 'b']) if obj == "series": ser = pd.Series(data, index=index) expected = pd.DataFrame({ "A": data.take([0, 1]), "B": data.take([2, 3]) }, index=pd.Index(['a', 'b'], name='b')) expected.columns.name = 'a' else: ser = pd.DataFrame({"A": data, "B": data}, index=index) expected = pd.DataFrame( {("A", "A"): data.take([0, 1]), ("A", "B"): data.take([2, 3]), ("B", "A"): data.take([0, 1]), ("B", "B"): data.take([2, 3])}, index=pd.Index(['a', 'b'], name='b') ) expected.columns.names = [None, 'a'] result = ser.unstack(0) self.assert_equal(result, expected)
def test_min_max_empty(self, skipna, tz): arr = DatetimeArray._from_sequence([], tz=tz) result = arr.min(skipna=skipna) assert result is pd.NaT result = arr.max(skipna=skipna) assert result is pd.NaT
def test_from_pandas_array(self): arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9 result = DatetimeArray._from_sequence(arr, freq='infer') expected = pd.date_range('1970-01-01', periods=5, freq='H')._data tm.assert_datetime_array_equal(result, expected)
def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp('2000'), pd.Timestamp('2001')]) result = arr.astype(dtype) if np.dtype(dtype).kind == 'u': expected_dtype = np.dtype('uint64') else: expected_dtype = np.dtype('int64') expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected)
def ensure_wrapped_if_datetimelike(arr): """ Wrap datetime64 and timedelta64 ndarrays in DatetimeArray/TimedeltaArray. """ if isinstance(arr, np.ndarray): if arr.dtype.kind == "M": from pandas.core.arrays import DatetimeArray return DatetimeArray._from_sequence(arr) elif arr.dtype.kind == "m": from pandas.core.arrays import TimedeltaArray return TimedeltaArray._from_sequence(arr) return arr
def test_median_empty(self, skipna, tz): dtype = DatetimeTZDtype( tz=tz) if tz is not None else np.dtype("M8[ns]") arr = DatetimeArray._from_sequence([], dtype=dtype) result = arr.median(skipna=skipna) assert result is pd.NaT arr = arr.reshape(0, 3) result = arr.median(axis=0, skipna=skipna) expected = type(arr)._from_sequence([pd.NaT, pd.NaT, pd.NaT], dtype=arr.dtype) tm.assert_equal(result, expected) result = arr.median(axis=1, skipna=skipna) expected = type(arr)._from_sequence([pd.NaT], dtype=arr.dtype) tm.assert_equal(result, expected)
def arr1d(self, tz_naive_fixture): tz = tz_naive_fixture dtype = DatetimeTZDtype( tz=tz) if tz is not None else np.dtype("M8[ns]") arr = DatetimeArray._from_sequence( [ "2000-01-03", "2000-01-03", "NaT", "2000-01-02", "2000-01-05", "2000-01-04", ], dtype=dtype, ) return arr
def test_mean_empty(self, arr1d, skipna): arr = arr1d[:0] assert arr.mean(skipna=skipna) is NaT arr2d = arr.reshape(0, 3) result = arr2d.mean(axis=0, skipna=skipna) expected = DatetimeArray._from_sequence([NaT, NaT, NaT], dtype=arr.dtype) tm.assert_datetime_array_equal(result, expected) result = arr2d.mean(axis=1, skipna=skipna) expected = arr # i.e. 1D, empty tm.assert_datetime_array_equal(result, expected) result = arr2d.mean(axis=None, skipna=skipna) assert result is NaT
def test_fillna_preserves_tz(self, method): dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == "pad" else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz="US/Central" ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central")
def test_fillna_preserves_tz(self, method): dti = pd.date_range('2000-01-01', periods=5, freq='D', tz='US/Central') arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == 'pad' else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz='US/Central' ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp('2000-01-03', tz='US/Central')
def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")]) with tm.assert_produces_warning(FutureWarning): # astype(int..) deprecated result = arr.astype(dtype) if np.dtype(dtype).kind == "u": expected_dtype = np.dtype("uint64") else: expected_dtype = np.dtype("int64") with tm.assert_produces_warning(FutureWarning): # astype(int..) deprecated expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected)
def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")]) if np.dtype(dtype).kind == "u": expected_dtype = np.dtype("uint64") else: expected_dtype = np.dtype("int64") expected = arr.astype(expected_dtype) warn = None if dtype != expected_dtype: warn = FutureWarning msg = " will return exactly the specified dtype" with tm.assert_produces_warning(warn, match=msg): result = arr.astype(dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected)
def to_timestamp(self, freq=None, how="start"): """ Cast to DatetimeArray/Index. Parameters ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod._validate_end_alias(how) end = how == "E" if end: if freq == "B": # roll forward to ensure we land on B date adjust = Timedelta(1, "D") - Timedelta(1, "ns") return self.to_timestamp(how="start") + adjust else: adjust = Timedelta(1, "ns") return (self + self.freq).to_timestamp(how="start") - adjust if freq is None: base, mult = libfrequencies.get_freq_code(self.freq) freq = libfrequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = libfrequencies.get_freq_code(freq) new_data = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) return DatetimeArray._from_sequence(new_data, freq="infer")
def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeArray/Index. Parameters ---------- freq : string or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod._validate_end_alias(how) end = how == 'E' if end: if freq == 'B': # roll forward to ensure we land on B date adjust = Timedelta(1, 'D') - Timedelta(1, 'ns') return self.to_timestamp(how='start') + adjust else: adjust = Timedelta(1, 'ns') return (self + self.freq).to_timestamp(how='start') - adjust if freq is None: base, mult = libfrequencies.get_freq_code(self.freq) freq = libfrequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = libfrequencies.get_freq_code(freq) new_data = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) return DatetimeArray._from_sequence(new_data, freq='infer')
def test_min_max(self, tz): arr = DatetimeArray._from_sequence([ '2000-01-03', '2000-01-03', 'NaT', '2000-01-02', '2000-01-05', '2000-01-04', ], tz=tz) result = arr.min() expected = pd.Timestamp('2000-01-02', tz=tz) assert result == expected result = arr.max() expected = pd.Timestamp('2000-01-05', tz=tz) assert result == expected result = arr.min(skipna=False) assert result is pd.NaT result = arr.max(skipna=False) assert result is pd.NaT
def maybe_upcast_datetimelike_array(obj: ArrayLike) -> ArrayLike: """ If we have an ndarray that is either datetime64 or timedelta64, wrap in EA. Parameters ---------- obj : ndarray or ExtensionArray Returns ------- ndarray or ExtensionArray """ if isinstance(obj, np.ndarray): if obj.dtype.kind == "m": from pandas.core.arrays import TimedeltaArray return TimedeltaArray._from_sequence(obj) if obj.dtype.kind == "M": from pandas.core.arrays import DatetimeArray return DatetimeArray._from_sequence(obj) return obj
def test_unstack(self, obj): # GH-13287: can't use base test, since building the expected fails. dtype = DatetimeTZDtype(tz="US/Central") data = DatetimeArray._from_sequence( ["2000", "2001", "2002", "2003"], dtype=dtype, ) index = pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]) if obj == "series": ser = pd.Series(data, index=index) expected = pd.DataFrame( { "A": data.take([0, 1]), "B": data.take([2, 3]) }, index=pd.Index(["a", "b"], name="b"), ) expected.columns.name = "a" else: ser = pd.DataFrame({"A": data, "B": data}, index=index) expected = pd.DataFrame( { ("A", "A"): data.take([0, 1]), ("A", "B"): data.take([2, 3]), ("B", "A"): data.take([0, 1]), ("B", "B"): data.take([2, 3]), }, index=pd.Index(["a", "b"], name="b"), ) expected.columns.names = [None, "a"] result = ser.unstack(0) self.assert_equal(result, expected)
def test_tz_setter_raises(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central")) with pytest.raises(AttributeError, match="tz_localize"): arr.tz = "UTC"
def test_from_sequence_invalid_type(self): mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)]) with pytest.raises(TypeError, match="Cannot create a DatetimeArray"): DatetimeArray._from_sequence(mi)
def test_astype_to_same(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central")) result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) assert result is arr
# # See also test_timedelta.TestTimedeltaArithmetic.test_floordiv td = Timedelta(hours=3, minutes=4) assert td // val is expected @pytest.mark.parametrize( "op_name", ["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"], ) @pytest.mark.parametrize( "value", [ DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"), DatetimeIndex(["2011-01-01", "2011-01-02"], tz="US/Eastern", name="x"), DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"]), DatetimeArray._from_sequence( ["2011-01-01", "2011-01-02"], dtype=DatetimeTZDtype(tz="US/Pacific") ), TimedeltaIndex(["1 day", "2 day"], name="x"), ], ) def test_nat_arithmetic_index(op_name, value): # see gh-11718 exp_name = "x" exp_data = [NaT] * 2 if is_datetime64_any_dtype(value.dtype) and "plus" in op_name: expected = DatetimeIndex(exp_data, tz=value.tz, name=exp_name) else: expected = TimedeltaIndex(exp_data, name=exp_name)
def array( data: Union[Sequence[object], AnyArrayLike], dtype: Optional[Dtype] = None, copy: bool = True, ) -> "ExtensionArray": """ Create an array. .. versionadded:: 0.24.0 Parameters ---------- data : Sequence of objects The scalars inside `data` should be instances of the scalar type for `dtype`. It's expected that `data` represents a 1-dimensional array of data. When `data` is an Index or Series, the underlying array will be extracted from `data`. dtype : str, np.dtype, or ExtensionDtype, optional The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using :meth:`pandas.api.extensions.register_extension_dtype`. If not specified, there are two possibilities: 1. When `data` is a :class:`Series`, :class:`Index`, or :class:`ExtensionArray`, the `dtype` will be taken from the data. 2. Otherwise, pandas will attempt to infer the `dtype` from the data. Note that when `data` is a NumPy array, ``data.dtype`` is *not* used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays. Currently, pandas will infer an extension dtype for sequences of ============================== ===================================== Scalar Type Array Type ============================== ===================================== :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray` :class:`pandas.Period` :class:`pandas.arrays.PeriodArray` :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray` :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray` :class:`int` :class:`pandas.arrays.IntegerArray` :class:`str` :class:`pandas.arrays.StringArray` :class:`bool` :class:`pandas.arrays.BooleanArray` ============================== ===================================== For all other cases, NumPy's usual inference rules will be used. .. versionchanged:: 1.0.0 Pandas infers nullable-integer dtype for integer data, string dtype for string data, and nullable-boolean dtype for boolean data. copy : bool, default True Whether to copy the data, even if not necessary. Depending on the type of `data`, creating the new array may require copying data, even if ``copy=False``. Returns ------- ExtensionArray The newly created array. Raises ------ ValueError When `data` is not 1-dimensional. See Also -------- numpy.array : Construct a NumPy array. Series : Construct a pandas Series. Index : Construct a pandas Index. arrays.PandasArray : ExtensionArray wrapping a NumPy array. Series.array : Extract the array stored within a Series. Notes ----- Omitting the `dtype` argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the "best" array type may change. We recommend specifying `dtype` to ensure that 1. the correct array type for the data is returned 2. the returned array type doesn't change as new extension types are added by pandas and third-party libraries Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the `dtype` as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return a :class:`arrays.PandasArray` backed by a NumPy array. >>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype. >>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Finally, Pandas has arrays that mostly overlap with NumPy * :class:`arrays.DatetimeArray` * :class:`arrays.TimedeltaArray` When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray`` rather than a ``PandasArray``. This is for symmetry with the case of timezone-aware data, which NumPy does not natively support. >>> pd.array(['2015', '2016'], dtype='datetime64[ns]') <DatetimeArray> ['2015-01-01 00:00:00', '2016-01-01 00:00:00'] Length: 2, dtype: datetime64[ns] >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]') <TimedeltaArray> ['0 days 01:00:00', '0 days 02:00:00'] Length: 2, dtype: timedelta64[ns] Examples -------- If a dtype is not specified, pandas will infer the best dtype from the values. See the description of `dtype` for the types pandas infers for. >>> pd.array([1, 2]) <IntegerArray> [1, 2] Length: 2, dtype: Int64 >>> pd.array([1, 2, np.nan]) <IntegerArray> [1, 2, <NA>] Length: 3, dtype: Int64 >>> pd.array(["a", None, "c"]) <StringArray> ['a', <NA>, 'c'] Length: 3, dtype: string >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D] You can use the string alias for `dtype` >>> pd.array(['a', 'b', 'a'], dtype='category') [a, b, a] Categories (2, object): [a, b] Or specify the actual dtype >>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) [a, b, a] Categories (3, object): [a < b < c] If pandas does not infer a dedicated extension type a :class:`arrays.PandasArray` is returned. >>> pd.array([1.1, 2.2]) <PandasArray> [1.1, 2.2] Length: 2, dtype: float64 As mentioned in the "Notes" section, new extension types may be added in the future (by pandas or 3rd party libraries), causing the return value to no longer be a :class:`arrays.PandasArray`. Specify the `dtype` as a NumPy dtype if you need to ensure there's no future change in behavior. >>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32 `data` must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality. >>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'. """ from pandas.core.arrays import ( period_array, BooleanArray, IntegerArray, IntervalArray, PandasArray, DatetimeArray, TimedeltaArray, StringArray, ) if lib.is_scalar(data): msg = f"Cannot pass scalar '{data}' to 'pandas.array'." raise ValueError(msg) if dtype is None and isinstance( data, (ABCSeries, ABCIndexClass, ABCExtensionArray)): dtype = data.dtype data = extract_array(data, extract_numpy=True) # this returns None for not-found dtypes. if isinstance(dtype, str): dtype = registry.find(dtype) or dtype if is_extension_array_dtype(dtype): cls = cast(ExtensionDtype, dtype).construct_array_type() return cls._from_sequence(data, dtype=dtype, copy=copy) if dtype is None: inferred_dtype = lib.infer_dtype(data, skipna=True) if inferred_dtype == "period": try: return period_array(data, copy=copy) except IncompatibleFrequency: # We may have a mixture of frequencies. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype == "interval": try: return IntervalArray(data, copy=copy) except ValueError: # We may have a mixture of `closed` here. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype.startswith("datetime"): # datetime, datetime64 try: return DatetimeArray._from_sequence(data, copy=copy) except ValueError: # Mixture of timezones, fall back to PandasArray pass elif inferred_dtype.startswith("timedelta"): # timedelta, timedelta64 return TimedeltaArray._from_sequence(data, copy=copy) elif inferred_dtype == "string": return StringArray._from_sequence(data, copy=copy) elif inferred_dtype == "integer": return IntegerArray._from_sequence(data, copy=copy) elif inferred_dtype == "boolean": return BooleanArray._from_sequence(data, copy=copy) # Pandas overrides NumPy for # 1. datetime64[ns] # 2. timedelta64[ns] # so that a DatetimeArray is returned. if is_datetime64_ns_dtype(dtype): return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy) elif is_timedelta64_ns_dtype(dtype): return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy) result = PandasArray._from_sequence(data, dtype=dtype, copy=copy) return result
def array(data: Sequence[object], dtype: Optional[Union[str, np.dtype, ExtensionDtype]] = None, copy: bool = True, ) -> ABCExtensionArray: """ Create an array. .. versionadded:: 0.24.0 Parameters ---------- data : Sequence of objects The scalars inside `data` should be instances of the scalar type for `dtype`. It's expected that `data` represents a 1-dimensional array of data. When `data` is an Index or Series, the underlying array will be extracted from `data`. dtype : str, np.dtype, or ExtensionDtype, optional The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using :meth:`pandas.api.extensions.register_extension_dtype`. If not specified, there are two possibilities: 1. When `data` is a :class:`Series`, :class:`Index`, or :class:`ExtensionArray`, the `dtype` will be taken from the data. 2. Otherwise, pandas will attempt to infer the `dtype` from the data. Note that when `data` is a NumPy array, ``data.dtype`` is *not* used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays. Currently, pandas will infer an extension dtype for sequences of ============================== ===================================== Scalar Type Array Type ============================== ===================================== :class:`pandas.Interval` :class:`pandas.arrays.IntervalArray` :class:`pandas.Period` :class:`pandas.arrays.PeriodArray` :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray` :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray` ============================== ===================================== For all other cases, NumPy's usual inference rules will be used. copy : bool, default True Whether to copy the data, even if not necessary. Depending on the type of `data`, creating the new array may require copying data, even if ``copy=False``. Returns ------- ExtensionArray The newly created array. Raises ------ ValueError When `data` is not 1-dimensional. See Also -------- numpy.array : Construct a NumPy array. Series : Construct a pandas Series. Index : Construct a pandas Index. arrays.PandasArray : ExtensionArray wrapping a NumPy array. Series.array : Extract the array stored within a Series. Notes ----- Omitting the `dtype` argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the "best" array type may change. We recommend specifying `dtype` to ensure that 1. the correct array type for the data is returned 2. the returned array type doesn't change as new extension types are added by pandas and third-party libraries Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the `dtype` as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return a :class:`arrays.PandasArray` backed by a NumPy array. >>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype. >>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Or use the dedicated constructor for the array you're expecting, and wrap that in a PandasArray >>> pd.array(np.array(['a', 'b'], dtype='<U1')) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Finally, Pandas has arrays that mostly overlap with NumPy * :class:`arrays.DatetimeArray` * :class:`arrays.TimedeltaArray` When data with a ``datetime64[ns]`` or ``timedelta64[ns]`` dtype is passed, pandas will always return a ``DatetimeArray`` or ``TimedeltaArray`` rather than a ``PandasArray``. This is for symmetry with the case of timezone-aware data, which NumPy does not natively support. >>> pd.array(['2015', '2016'], dtype='datetime64[ns]') <DatetimeArray> ['2015-01-01 00:00:00', '2016-01-01 00:00:00'] Length: 2, dtype: datetime64[ns] >>> pd.array(["1H", "2H"], dtype='timedelta64[ns]') <TimedeltaArray> ['01:00:00', '02:00:00'] Length: 2, dtype: timedelta64[ns] Examples -------- If a dtype is not specified, `data` is passed through to :meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned. >>> pd.array([1, 2]) <PandasArray> [1, 2] Length: 2, dtype: int64 Or the NumPy dtype can be specified >>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32 You can use the string alias for `dtype` >>> pd.array(['a', 'b', 'a'], dtype='category') [a, b, a] Categories (2, object): [a, b] Or specify the actual dtype >>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) [a, b, a] Categories (3, object): [a < b < c] Because omitting the `dtype` passes the data through to NumPy, a mixture of valid integers and NA will return a floating-point NumPy array. >>> pd.array([1, 2, np.nan]) <PandasArray> [1.0, 2.0, nan] Length: 3, dtype: float64 To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify the dtype: >>> pd.array([1, 2, np.nan], dtype='Int64') <IntegerArray> [1, 2, NaN] Length: 3, dtype: Int64 Pandas will infer an ExtensionArray for some types of data: >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D] `data` must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality. >>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'. """ from pandas.core.arrays import ( period_array, ExtensionArray, IntervalArray, PandasArray, DatetimeArray, TimedeltaArray, ) from pandas.core.internals.arrays import extract_array if lib.is_scalar(data): msg = ( "Cannot pass scalar '{}' to 'pandas.array'." ) raise ValueError(msg.format(data)) data = extract_array(data, extract_numpy=True) if dtype is None and isinstance(data, ExtensionArray): dtype = data.dtype # this returns None for not-found dtypes. if isinstance(dtype, str): dtype = registry.find(dtype) or dtype if is_extension_array_dtype(dtype): cls = dtype.construct_array_type() return cls._from_sequence(data, dtype=dtype, copy=copy) if dtype is None: inferred_dtype = lib.infer_dtype(data, skipna=False) if inferred_dtype == 'period': try: return period_array(data, copy=copy) except tslibs.IncompatibleFrequency: # We may have a mixture of frequencies. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype == 'interval': try: return IntervalArray(data, copy=copy) except ValueError: # We may have a mixture of `closed` here. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype.startswith('datetime'): # datetime, datetime64 try: return DatetimeArray._from_sequence(data, copy=copy) except ValueError: # Mixture of timezones, fall back to PandasArray pass elif inferred_dtype.startswith('timedelta'): # timedelta, timedelta64 return TimedeltaArray._from_sequence(data, copy=copy) # TODO(BooleanArray): handle this type # Pandas overrides NumPy for # 1. datetime64[ns] # 2. timedelta64[ns] # so that a DatetimeArray is returned. if is_datetime64_ns_dtype(dtype): return DatetimeArray._from_sequence(data, dtype=dtype, copy=copy) elif is_timedelta64_ns_dtype(dtype): return TimedeltaArray._from_sequence(data, dtype=dtype, copy=copy) result = PandasArray._from_sequence(data, dtype=dtype, copy=copy) return result
def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence(['2000'], tz='US/Central') with pytest.raises(TypeError, match='data is already tz-aware'): sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC"))
# # See also test_timedelta.TestTimedeltaArithmetic.test_floordiv td = Timedelta(hours=3, minutes=4) assert td // val is expected @pytest.mark.parametrize( "op_name", ["left_plus_right", "right_plus_left", "left_minus_right", "right_minus_left"], ) @pytest.mark.parametrize( "value", [ DatetimeIndex(["2011-01-01", "2011-01-02"], name="x"), DatetimeIndex(["2011-01-01", "2011-01-02"], tz="US/Eastern", name="x"), DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"]), DatetimeArray._from_sequence(["2011-01-01", "2011-01-02"], tz="US/Pacific"), TimedeltaIndex(["1 day", "2 day"], name="x"), ], ) def test_nat_arithmetic_index(op_name, value): # see gh-11718 exp_name = "x" exp_data = [NaT] * 2 if is_datetime64_any_dtype(value.dtype) and "plus" in op_name: expected = DatetimeIndex(exp_data, tz=value.tz, name=exp_name) else: expected = TimedeltaIndex(exp_data, name=exp_name) if not isinstance(value, Index):
def test_tz_setter_raises(self): arr = DatetimeArray._from_sequence(['2000'], tz='US/Central') with pytest.raises(AttributeError, match='tz_localize'): arr.tz = 'UTC'
def test_astype_to_same(self): arr = DatetimeArray._from_sequence(['2000'], tz='US/Central') result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) assert result is arr
def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central")) with pytest.raises(TypeError, match="data is already tz-aware"): sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC"))
def array( data, # type: Sequence[object] dtype=None, # type: Optional[Union[str, np.dtype, ExtensionDtype]] copy=True, # type: bool ): # type: (...) -> ExtensionArray """ Create an array. .. versionadded:: 0.24.0 Parameters ---------- data : Sequence of objects The scalars inside `data` should be instances of the scalar type for `dtype`. It's expected that `data` represents a 1-dimensional array of data. When `data` is an Index or Series, the underlying array will be extracted from `data`. dtype : str, np.dtype, or ExtensionDtype, optional The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using :meth:`pandas.api.extensions.register_extension_dtype`. If not specified, there are two possibilities: 1. When `data` is a :class:`Series`, :class:`Index`, or :class:`ExtensionArray`, the `dtype` will be taken from the data. 2. Otherwise, pandas will attempt to infer the `dtype` from the data. Note that when `data` is a NumPy array, ``data.dtype`` is *not* used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays. Currently, pandas will infer an extension dtype for sequences of ============================== ===================================== scalar type Array Type ============================= ===================================== * :class:`pandas.Interval` :class:`pandas.IntervalArray` * :class:`pandas.Period` :class:`pandas.arrays.PeriodArray` * :class:`datetime.datetime` :class:`pandas.arrays.DatetimeArray` * :class:`datetime.timedelta` :class:`pandas.arrays.TimedeltaArray` ============================= ===================================== For all other cases, NumPy's usual inference rules will be used. copy : bool, default True Whether to copy the data, even if not necessary. Depending on the type of `data`, creating the new array may require copying data, even if ``copy=False``. Returns ------- ExtensionArray The newly created array. Raises ------ ValueError When `data` is not 1-dimensional. See Also -------- numpy.array : Construct a NumPy array. arrays.PandasArray : ExtensionArray wrapping a NumPy array. Series : Construct a pandas Series. Index : Construct a pandas Index. Notes ----- Omitting the `dtype` argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the "best" array type may change. We recommend specifying `dtype` to ensure that 1. the correct array type for the data is returned 2. the returned array type doesn't change as new extension types are added by pandas and third-party libraries Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the `dtype` as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return a :class:`arrays.PandasArray` backed by a NumPy array. >>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype. >>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Or use the dedicated constructor for the array you're expecting, and wrap that in a PandasArray >>> pd.array(np.array(['a', 'b'], dtype='<U1')) <PandasArray> ['a', 'b'] Length: 2, dtype: str32 Examples -------- If a dtype is not specified, `data` is passed through to :meth:`numpy.array`, and a :class:`arrays.PandasArray` is returned. >>> pd.array([1, 2]) <PandasArray> [1, 2] Length: 2, dtype: int64 Or the NumPy dtype can be specified >>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32 You can use the string alias for `dtype` >>> pd.array(['a', 'b', 'a'], dtype='category') [a, b, a] Categories (2, object): [a, b] Or specify the actual dtype >>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) [a, b, a] Categories (3, object): [a < b < c] Because omitting the `dtype` passes the data through to NumPy, a mixture of valid integers and NA will return a floating-point NumPy array. >>> pd.array([1, 2, np.nan]) <PandasArray> [1.0, 2.0, nan] Length: 3, dtype: float64 To use pandas' nullable :class:`pandas.arrays.IntegerArray`, specify the dtype: >>> pd.array([1, 2, np.nan], dtype='Int64') <IntegerArray> [1, 2, NaN] Length: 3, dtype: Int64 Pandas will infer an ExtensionArray for some types of data: >>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D] `data` must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality. >>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'. """ from pandas.core.arrays import ( period_array, ExtensionArray, IntervalArray, PandasArray, DatetimeArray, TimedeltaArray, ) from pandas.core.internals.arrays import extract_array if lib.is_scalar(data): msg = ("Cannot pass scalar '{}' to 'pandas.array'.") raise ValueError(msg.format(data)) data = extract_array(data, extract_numpy=True) if dtype is None and isinstance(data, ExtensionArray): dtype = data.dtype # this returns None for not-found dtypes. if isinstance(dtype, compat.string_types): dtype = registry.find(dtype) or dtype if is_extension_array_dtype(dtype): cls = dtype.construct_array_type() return cls._from_sequence(data, dtype=dtype, copy=copy) if dtype is None: inferred_dtype = lib.infer_dtype(data, skipna=False) if inferred_dtype == 'period': try: return period_array(data, copy=copy) except tslibs.IncompatibleFrequency: # We may have a mixture of frequencies. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype == 'interval': try: return IntervalArray(data, copy=copy) except ValueError: # We may have a mixture of `closed` here. # We choose to return an ndarray, rather than raising. pass elif inferred_dtype.startswith('datetime'): # datetime, datetime64 try: return DatetimeArray._from_sequence(data, copy=copy) except ValueError: # Mixture of timezones, fall back to PandasArray pass elif inferred_dtype.startswith('timedelta'): # timedelta, timedelta64 return TimedeltaArray._from_sequence(data, copy=copy) # TODO(BooleanArray): handle this type result = PandasArray._from_sequence(data, dtype=dtype, copy=copy) return result
def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence( ["2000"], dtype=DatetimeTZDtype(tz="US/Central")) result, _, _ = sequence_to_dt64ns( arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result)
def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence(['2000'], tz='US/Central') result, _, _ = sequence_to_dt64ns( arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result)