예제 #1
0
def _convert_index(index):
    # Let's assume the index is homogeneous
    values = np.asarray(index)

    if isinstance(values[0], (datetime, date)):
        if isinstance(values[0], datetime):
            kind = 'datetime'
        else:
            kind = 'date'
        converted = np.array([time.mktime(v.timetuple()) for v in values],
                             dtype=np.int64)
        return converted, kind, _tables().Time64Col()
    elif isinstance(values[0], basestring):
        converted = np.array(list(values), dtype=np.str_)
        itemsize = converted.dtype.itemsize
        return converted, 'string', _tables().StringCol(itemsize)
    elif com.is_integer(values[0]):
        # take a guess for now, hope the values fit
        atom = _tables().Int64Col()
        return np.asarray(values, dtype=np.int64), 'integer', atom
    elif com.is_float(values[0]):
        atom = _tables().Float64Col()
        return np.asarray(values, dtype=np.float64), 'float', atom
    else:  # pragma: no cover
        atom = _tables().ObjectAtom()
        return np.asarray(values, dtype='O'), 'object', atom
예제 #2
0
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        If label is a string, cast it to timedelta according to resolution.


        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : string / None

        Returns
        -------
        label :  object

        """
        if isinstance(label, compat.string_types):
            parsed = _coerce_scalar_to_timedelta_type(label, box=True)
            lbound = parsed.round(parsed.resolution)
            if side == "left":
                return lbound
            else:
                return lbound + _resolution_map[parsed.resolution]() - Timedelta(1, "ns")
        elif is_integer(label) or is_float(label):
            self._invalid_indexer("slice", label)

        return label
예제 #3
0
파일: converter.py 프로젝트: tkiran/pandas
    def convert(values, unit, axis):
        from pandas.tseries.index import DatetimeIndex
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, basestring):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray)):
            if not isinstance(values, np.ndarray):
                values = np.array(values, dtype='O')

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = values.map(_dt_to_float_ordinal)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                pass

        return values
예제 #4
0
파일: tile.py 프로젝트: ARF1/pandas
def _format_label(x, precision=3):
    fmt_str = '%%.%dg' % precision
    if np.isinf(x):
        return str(x)
    elif com.is_float(x):
        frac, whole = np.modf(x)
        sgn = '-' if x < 0 else ''
        whole = abs(whole)
        if frac != 0.0:
            val = fmt_str % frac

            # rounded up or down
            if '.' not in val:
                if x < 0:
                    return '%d' % (-whole - 1)
                else:
                    return '%d' % (whole + 1)

            if 'e' in val:
                return _trim_zeros(fmt_str % x)
            else:
                val = _trim_zeros(val)
                if '.' in val:
                    return sgn + '.'.join(('%d' % whole, val.split('.')[1]))
                else:  # pragma: no cover
                    return sgn + '.'.join(('%d' % whole, val))
        else:
            return sgn + '%0.f' % whole
    else:
        return str(x)
예제 #5
0
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        If label is a string or a datetime, cast it to Period.ordinal according to
        resolution.

        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : string / None

        Returns
        -------
        bound : Period or object

        Notes
        -----
        Value of `side` parameter should be validated in caller.

        """
        if isinstance(label, datetime):
            return Period(label, freq=self.freq)
        elif isinstance(label, compat.string_types):
            try:
                _, parsed, reso = parse_time_string(label, self.freq)
                bounds = self._parsed_string_to_bounds(reso, parsed)
                return bounds[0 if side == 'left' else 1]
            except Exception:
                raise KeyError(label)
        elif is_integer(label) or is_float(label):
            self._invalid_indexer('slice',label)

        return label
예제 #6
0
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if issubclass(dtype.type, np.datetime64):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif issubclass(dtype.type, np.timedelta64):
        if not isinstance(result, np.ndarray):

            # this is a scalar timedelta result!
            # we have series convert then take the element (scalar)
            # as series will do the right thing in py3 (and deal with numpy
            # 1.6.2 bug in that it results dtype of timedelta64[us]
            from pandas import Series

            # coerce float to results
            if is_float(result):
                result = int(result)
            result = Series([result], dtype='timedelta64[ns]')
        else:
            result = result.view(dtype)

    return result
예제 #7
0
파일: period.py 프로젝트: zkluo1/pandas
    def __new__(cls, data=None, ordinal=None,
                freq=None, start=None, end=None, periods=None,
                copy=False, name=None,
                year=None, month=None, quarter=None, day=None,
                hour=None, minute=None, second=None):

        if isinstance(freq, Period):
            freq = freq.freq
        else:
            freq = _freq_mod.get_standard_freq(freq)

        if periods is not None:
            if com.is_float(periods):
                periods = int(periods)
            elif not com.is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                fields = [year, month, quarter, day, hour, minute, second]
                data, freq = cls._generate_range(start, end, periods,
                                                    freq, fields)
        else:
            ordinal, freq = cls._from_arraylike(data, freq)
            data = np.array(ordinal, dtype=np.int64, copy=False)

        subarr = data.view(cls)
        subarr.name = name
        subarr.freq = freq

        return subarr
예제 #8
0
    def convert(values, unit, axis):
        from pandas.tseries.index import DatetimeIndex

        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif com.is_integer(values) or com.is_float(values):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray)):
            if not isinstance(values, np.ndarray):
                values = np.array(values, dtype="O")

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = values.map(_dt_to_float_ordinal)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                pass

        return values
예제 #9
0
파일: nanops.py 프로젝트: Barneyjm/pandas
def _wrap_results(result, dtype):
    """ wrap our results if needed """

    if issubclass(dtype.type, np.datetime64):
        if not isinstance(result, np.ndarray):
            result = lib.Timestamp(result)
        else:
            result = result.view(dtype)
    elif issubclass(dtype.type, np.timedelta64):
        if not isinstance(result, np.ndarray):

            # this is a scalar timedelta result!
            # we have series convert then take the element (scalar)
            # as series will do the right thing in py3 (and deal with numpy
            # 1.6.2 bug in that it results dtype of timedelta64[us]
            from pandas import Series

            # coerce float to results
            if is_float(result):
                result = int(result)
            result = Series([result], dtype='timedelta64[ns]')
        else:
            result = result.view(dtype)

    return result
예제 #10
0
파일: period.py 프로젝트: hrestrepo/pandas
    def __new__(
        cls,
        data=None,
        ordinal=None,
        freq=None,
        start=None,
        end=None,
        periods=None,
        copy=False,
        name=None,
        tz=None,
        **kwargs
    ):

        freq = frequencies.get_standard_freq(freq)

        if periods is not None:
            if com.is_float(periods):
                periods = int(periods)
            elif not com.is_integer(periods):
                raise ValueError("Periods must be a number, got %s" % str(periods))

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq, kwargs)
        else:
            ordinal, freq = cls._from_arraylike(data, freq, tz)
            data = np.array(ordinal, dtype=np.int64, copy=False)

        return cls._simple_new(data, name=name, freq=freq)
예제 #11
0
파일: base.py 프로젝트: Jeevsy/pandas
    def _convert_scalar_indexer(self, key, kind=None):
        """
        we don't allow integer or float indexing on datetime-like when using
        loc

        Parameters
        ----------
        key : label of the slice bound
        kind : {'ix', 'loc', 'getitem', 'iloc'} or None
        """

        assert kind in ['ix', 'loc', 'getitem', 'iloc', None]

        # we don't allow integer/float indexing for loc
        # we don't allow float indexing for ix/getitem
        if lib.isscalar(key):
            is_int = is_integer(key)
            is_flt = is_float(key)
            if kind in ['loc'] and (is_int or is_flt):
                self._invalid_indexer('index', key)
            elif kind in ['ix', 'getitem'] and is_flt:
                self._invalid_indexer('index', key)

        return (super(DatetimeIndexOpsMixin, self)
                ._convert_scalar_indexer(key, kind=kind))
예제 #12
0
    def convert(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, basestring):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray)):
            if not isinstance(values, np.ndarray):
                values = com._asarray_tuplesafe(values)

            if com.is_integer_dtype(values) or com.is_float_dtype(values):
                return values

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = values.map(_dt_to_float_ordinal)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                pass

        return values
예제 #13
0
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        This function should be overloaded in subclasses that allow non-trivial
        casting on label-slice bounds, e.g. datetime-like indices allowing
        strings containing formatted datetimes.

        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : string / None

        Returns
        -------
        label :  object

        Notes
        -----
        Value of `side` parameter should be validated in caller.

        """

        # we are a numeric index, so we accept
        # integer/floats directly
        if not (com.is_integer(label) or com.is_float(label)):
            self._invalid_indexer('slice', label)

        return label
예제 #14
0
    def _convert_scalar_indexer(self, key, kind=None):
        """
        we don't allow integer or float indexing on datetime-like when using
        loc

        Parameters
        ----------
        key : label of the slice bound
        kind : {'ix', 'loc', 'getitem', 'iloc'} or None
        """

        assert kind in ['ix', 'loc', 'getitem', 'iloc', None]

        # we don't allow integer/float indexing for loc
        # we don't allow float indexing for ix/getitem
        if lib.isscalar(key):
            is_int = is_integer(key)
            is_flt = is_float(key)
            if kind in ['loc'] and (is_int or is_flt):
                self._invalid_indexer('index', key)
            elif kind in ['ix', 'getitem'] and is_flt:
                self._invalid_indexer('index', key)

        return (super(DatetimeIndexOpsMixin,
                      self)._convert_scalar_indexer(key, kind=kind))
예제 #15
0
    def __new__(cls, data=None, ordinal=None,
                freq=None, start=None, end=None, periods=None,
                copy=False, name=None,
                year=None, month=None, quarter=None, day=None,
                hour=None, minute=None, second=None):

        freq = _freq_mod.get_standard_freq(freq)

        if periods is not None:
            if com.is_float(periods):
                periods = int(periods)
            elif not com.is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                fields = [year, month, quarter, day, hour, minute, second]
                data, freq = cls._generate_range(start, end, periods,
                                                    freq, fields)
        else:
            ordinal, freq = cls._from_arraylike(data, freq)
            data = np.array(ordinal, dtype=np.int64, copy=False)

        subarr = data.view(cls)
        subarr.name = name
        subarr.freq = freq

        return subarr
예제 #16
0
파일: tdi.py 프로젝트: AbnerZheng/pandas
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        If label is a string, cast it to timedelta according to resolution.


        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : {'ix', 'loc', 'getitem'}

        Returns
        -------
        label :  object

        """
        assert kind in ['ix', 'loc', 'getitem', None]

        if isinstance(label, compat.string_types):
            parsed = _coerce_scalar_to_timedelta_type(label, box=True)
            lbound = parsed.round(parsed.resolution)
            if side == 'left':
                return lbound
            else:
                return (lbound + to_offset(parsed.resolution) -
                        Timedelta(1, 'ns'))
        elif is_integer(label) or is_float(label):
            self._invalid_indexer('slice', label)

        return label
예제 #17
0
    def convert(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, compat.string_types):
            return try_parse(values)
        elif isinstance(values, (list, tuple, np.ndarray)):
            if not isinstance(values, np.ndarray):
                values = com._asarray_tuplesafe(values)

            if com.is_integer_dtype(values) or com.is_float_dtype(values):
                return values

            try:
                values = tools.to_datetime(values)
                if isinstance(values, Index):
                    values = values.map(_dt_to_float_ordinal)
                else:
                    values = [_dt_to_float_ordinal(x) for x in values]
            except Exception:
                pass

        return values
예제 #18
0
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        This function should be overloaded in subclasses that allow non-trivial
        casting on label-slice bounds, e.g. datetime-like indices allowing
        strings containing formatted datetimes.

        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : string / None

        Returns
        -------
        label :  object

        Notes
        -----
        Value of `side` parameter should be validated in caller.

        """

        # we are a numeric index, so we accept
        # integer/floats directly
        if not (com.is_integer(label) or com.is_float(label)):
            self._invalid_indexer('slice', label)

        return label
예제 #19
0
파일: period.py 프로젝트: Arthurkorn/pandas
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        If label is a string or a datetime, cast it to Period.ordinal according to
        resolution.

        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : string / None

        Returns
        -------
        bound : Period or object

        Notes
        -----
        Value of `side` parameter should be validated in caller.

        """
        if isinstance(label, datetime):
            return Period(label, freq=self.freq)
        elif isinstance(label, compat.string_types):
            try:
                _, parsed, reso = parse_time_string(label, self.freq)
                bounds = self._parsed_string_to_bounds(reso, parsed)
                return bounds[0 if side == 'left' else 1]
            except Exception:
                raise KeyError(label)
        elif is_integer(label) or is_float(label):
            self._invalid_indexer('slice',label)

        return label
예제 #20
0
    def _maybe_cast_slice_bound(self, label, side, kind):
        """
        If label is a string, cast it to timedelta according to resolution.


        Parameters
        ----------
        label : object
        side : {'left', 'right'}
        kind : {'ix', 'loc', 'getitem'}

        Returns
        -------
        label :  object

        """
        assert kind in ['ix', 'loc', 'getitem', None]

        if isinstance(label, compat.string_types):
            parsed = _coerce_scalar_to_timedelta_type(label, box=True)
            lbound = parsed.round(parsed.resolution)
            if side == 'left':
                return lbound
            else:
                return (lbound + to_offset(parsed.resolution) -
                        Timedelta(1, 'ns'))
        elif is_integer(label) or is_float(label):
            self._invalid_indexer('slice', label)

        return label
예제 #21
0
def _convert_index(index):
    # Let's assume the index is homogeneous
    values = np.asarray(index)

    if isinstance(values[0], (datetime, date)):
        if isinstance(values[0], datetime):
            kind = 'datetime'
        else:
            kind = 'date'
        converted = np.array([time.mktime(v.timetuple()) for v in values],
                             dtype=np.int64)
        return converted, kind, _tables().Time64Col()
    elif isinstance(values[0], basestring):
        converted = np.array(list(values), dtype=np.str_)
        itemsize = converted.dtype.itemsize
        return converted, 'string', _tables().StringCol(itemsize)
    elif com.is_integer(values[0]):
        # take a guess for now, hope the values fit
        atom = _tables().Int64Col()
        return np.asarray(values, dtype=np.int64), 'integer', atom
    elif com.is_float(values[0]):
        atom = _tables().Float64Col()
        return np.asarray(values, dtype=np.float64), 'float', atom
    else: # pragma: no cover
        atom = _tables().ObjectAtom()
        return np.asarray(values, dtype='O'), 'object', atom
예제 #22
0
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                copy=False,
                name=None,
                tz=None,
                **kwargs):

        freq = frequencies.get_standard_freq(freq)

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 kwargs)
        else:
            ordinal, freq = cls._from_arraylike(data, freq, tz)
            data = np.array(ordinal, dtype=np.int64, copy=False)

        return cls._simple_new(data, name=name, freq=freq)
예제 #23
0
파일: pytables.py 프로젝트: dhm116/pandas
def _convert_index(index):
    inferred_type = lib.infer_dtype(index)

    # Let's assume the index is homogeneous
    values = np.asarray(index)

    if inferred_type == 'datetime64':
        converted = values.view('i8')
        return converted, 'datetime64', _tables().Int64Col()
    elif isinstance(values[0], datetime):
        converted = np.array([(time.mktime(v.timetuple()) +
                            v.microsecond / 1E6) for v in values],
                            dtype=np.float64)
        return converted, 'datetime', _tables().Time64Col()
    elif isinstance(values[0], date):
        converted = np.array([time.mktime(v.timetuple()) for v in values],
                            dtype=np.int32)
        return converted, 'date', _tables().Time32Col()
    elif isinstance(values[0], basestring):
        converted = np.array(list(values), dtype=np.str_)
        itemsize = converted.dtype.itemsize
        return converted, 'string', _tables().StringCol(itemsize)
    elif com.is_integer(values[0]):
        # take a guess for now, hope the values fit
        atom = _tables().Int64Col()
        return np.asarray(values, dtype=np.int64), 'integer', atom
    elif com.is_float(values[0]):
        atom = _tables().Float64Col()
        return np.asarray(values, dtype=np.float64), 'float', atom
    else: # pragma: no cover
        atom = _tables().ObjectAtom()
        return np.asarray(values, dtype='O'), 'object', atom
예제 #24
0
def _format_label(x, precision=3):
    fmt_str = '%%.%dg' % precision
    if np.isinf(x):
        return str(x)
    elif com.is_float(x):
        frac, whole = np.modf(x)
        sgn = '-' if x < 0 else ''
        whole = abs(whole)
        if frac != 0.0:
            val = fmt_str % frac

            # rounded up or down
            if '.' not in val:
                if x < 0:
                    return '%d' % (-whole - 1)
                else:
                    return '%d' % (whole + 1)

            if 'e' in val:
                return _trim_zeros(fmt_str % x)
            else:
                val = _trim_zeros(val)
                if '.' in val:
                    return sgn + '.'.join(('%d' % whole, val.split('.')[1]))
                else:  # pragma: no cover
                    return sgn + '.'.join(('%d' % whole, val))
        else:
            return sgn + '%0.f' % whole
    else:
        return str(x)
예제 #25
0
파일: tdi.py 프로젝트: AbnerZheng/pandas
 def _get_string_slice(self, key, use_lhs=True, use_rhs=True):
     freq = getattr(self, 'freqstr',
                    getattr(self, 'inferred_freq', None))
     if is_integer(key) or is_float(key):
         self._invalid_indexer('slice', key)
     loc = self._partial_td_slice(key, freq, use_lhs=use_lhs,
                                  use_rhs=use_rhs)
     return loc
예제 #26
0
 def _get_string_slice(self, key, use_lhs=True, use_rhs=True):
     freq = getattr(self, 'freqstr',
                    getattr(self, 'inferred_freq', None))
     if is_integer(key) or is_float(key):
         self._invalid_indexer('slice', key)
     loc = self._partial_td_slice(key, freq, use_lhs=use_lhs,
                                  use_rhs=use_rhs)
     return loc
예제 #27
0
 def convert(value, unit, axis):
     valid_types = (str, pydt.time)
     if isinstance(value, valid_types) or com.is_integer(value) or com.is_float(value):
         return time2num(value)
     if isinstance(value, Index):
         return value.map(time2num)
     if isinstance(value, (list, tuple, np.ndarray)):
         return [time2num(x) for x in value]
     return value
예제 #28
0
 def convert(value, unit, axis):
     valid_types = (str, pydt.time)
     if (isinstance(value, valid_types) or com.is_integer(value) or
             com.is_float(value)):
         return time2num(value)
     if isinstance(value, Index):
         return value.map(time2num)
     if isinstance(value, (list, tuple, np.ndarray)):
         return [time2num(x) for x in value]
     return value
예제 #29
0
def get_datevalue(date, freq):
    if isinstance(date, Period):
        return date.asfreq(freq).ordinal
    elif isinstance(date, (str, datetime, pydt.date, pydt.time)):
        return Period(date, freq).ordinal
    elif com.is_integer(date) or com.is_float(date) or (isinstance(date, np.ndarray) and (date.size == 1)):
        return date
    elif date is None:
        return None
    raise ValueError("Unrecognizable date '%s'" % date)
예제 #30
0
파일: nanops.py 프로젝트: X1mengYu/pandas
def _ensure_numeric(x):
    if isinstance(x, np.ndarray):
        if x.dtype == np.object_:
            x = x.astype(np.float64)
    elif not (com.is_float(x) or com.is_integer(x)):
        try:
            x = float(x)
        except Exception:
            raise TypeError('Could not convert %s to numeric' % str(x))

    return x
예제 #31
0
def _ensure_numeric(x):
    if isinstance(x, np.ndarray):
        if x.dtype == np.object_:
            x = x.astype(np.float64)
    elif not (com.is_float(x) or com.is_integer(x)):
        try:
            x = float(x)
        except Exception:
            raise TypeError('Could not convert %s to numeric' % str(x))

    return x
예제 #32
0
def get_datevalue(date, freq):
    if isinstance(date, Period):
        return date.asfreq(freq).ordinal
    elif isinstance(date, (str, datetime, pydt.date, pydt.time)):
        return Period(date, freq).ordinal
    elif (com.is_integer(date) or com.is_float(date)
          or (isinstance(date, np.ndarray) and (date.size == 1))):
        return date
    elif date is None:
        return None
    raise ValueError("Unrecognizable date '%s'" % date)
예제 #33
0
 def convert(values, units, axis):
     if not hasattr(axis, "freq"):
         raise TypeError("Axis must have `freq` set to convert to Periods")
     valid_types = (str, datetime, Period, pydt.date, pydt.time)
     if isinstance(values, valid_types) or com.is_integer(values) or com.is_float(values):
         return get_datevalue(values, axis.freq)
     if isinstance(values, Index):
         return values.map(lambda x: get_datevalue(x, axis.freq))
     if isinstance(values, (list, tuple, np.ndarray)):
         return [get_datevalue(x, axis.freq) for x in values]
     return values
예제 #34
0
파일: excel.py 프로젝트: nhanitvn/pandas
def _conv_value(val):
    # Convert numpy types to Python types for the Excel writers.
    if com.is_integer(val):
        val = int(val)
    elif com.is_float(val):
        val = float(val)
    elif com.is_bool(val):
        val = bool(val)
    elif isinstance(val, Period):
        val = "%s" % val

    return val
예제 #35
0
 def convert(values, units, axis):
     if not hasattr(axis, 'freq'):
         raise TypeError('Axis must have `freq` set to convert to Periods')
     valid_types = (str, datetime, Period, pydt.date, pydt.time)
     if (isinstance(values, valid_types) or com.is_integer(values)
             or com.is_float(values)):
         return get_datevalue(values, axis.freq)
     if isinstance(values, Index):
         return values.map(lambda x: get_datevalue(x, axis.freq))
     if isinstance(values, (list, tuple, np.ndarray)):
         return [get_datevalue(x, axis.freq) for x in values]
     return values
예제 #36
0
def _conv_value(val):
    # Convert numpy types to Python types for the Excel writers.
    if com.is_integer(val):
        val = int(val)
    elif com.is_float(val):
        val = float(val)
    elif com.is_bool(val):
        val = bool(val)
    elif isinstance(val, Period):
        val = "%s" % val

    return val
예제 #37
0
    def _convert_scalar_indexer(self, key, kind=None):
        """
        we don't allow integer or float indexing on datetime-like when using loc

        Parameters
        ----------
        key : label of the slice bound
        kind : optional, type of the indexing operation (loc/ix/iloc/None)
        """

        if kind in ['loc'] and lib.isscalar(key) and (is_integer(key) or is_float(key)):
            self._invalid_indexer('index',key)

        return super(DatetimeIndexOpsMixin, self)._convert_scalar_indexer(key, kind=kind)
예제 #38
0
    def _convert_scalar_indexer(self, key, kind=None):
        """
        we don't allow integer or float indexing on datetime-like when using loc

        Parameters
        ----------
        key : label of the slice bound
        kind : optional, type of the indexing operation (loc/ix/iloc/None)
        """

        if kind in ['loc'] and lib.isscalar(key) and (is_integer(key) or is_float(key)):
            self._invalid_indexer('index',key)

        return super(DatetimeIndexOpsMixin, self)._convert_scalar_indexer(key, kind=kind)
예제 #39
0
파일: converter.py 프로젝트: 5i7788/pandas
 def convert(values, units, axis):
     if not hasattr(axis, 'freq'):
         raise TypeError('Axis must have `freq` set to convert to Periods')
     valid_types = (str, datetime, Period, pydt.date, pydt.time)
     if (isinstance(values, valid_types) or com.is_integer(values) or
             com.is_float(values)):
         return get_datevalue(values, axis.freq)
     if isinstance(values, PeriodIndex):
         return values.asfreq(axis.freq).values
     if isinstance(values, Index):
         return values.map(lambda x: get_datevalue(x, axis.freq))
     if isinstance(values, (list, tuple, np.ndarray, Index)):
         return PeriodIndex(values, freq=axis.freq).values
     return values
예제 #40
0
파일: plotting.py 프로젝트: sbenzev/pandas
    def convert(cls, values, units, axis):
        def try_parse(values):
            try:
                return datetools.to_datetime(values).toordinal()
            except Exception:
                return values

        if (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, Index):
            return values.map(try_parse)
        return map(try_parse, values)
예제 #41
0
파일: plotting.py 프로젝트: paddymul/pandas
    def convert(cls, values, units, axis):
        def try_parse(values):
            try:
                return datetools.to_datetime(values).toordinal()
            except Exception:
                return values

        if (com.is_integer(values) or
            com.is_float(values)):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, Index):
            return values.map(try_parse)
        return map(try_parse, values)
예제 #42
0
    def _simple_new(cls, data, sp_index, fill_value):
        if (com.is_integer_dtype(data) and com.is_float(fill_value)
                and sp_index.ngaps > 0):
            # if float fill_value is being included in dense repr,
            # convert values to float
            data = data.astype(float)

        result = data.view(cls)

        if not isinstance(sp_index, SparseIndex):
            # caller must pass SparseIndex
            raise ValueError('sp_index must be a SparseIndex')

        result.sp_index = sp_index
        result.fill_value = fill_value
        return result
예제 #43
0
    def _simple_new(cls, data, sp_index, fill_value):
        if (com.is_integer_dtype(data) and com.is_float(fill_value) and
           sp_index.ngaps > 0):
            # if float fill_value is being included in dense repr,
            # convert values to float
            data = data.astype(float)

        result = data.view(cls)

        if not isinstance(sp_index, SparseIndex):
            # caller must pass SparseIndex
            raise ValueError('sp_index must be a SparseIndex')

        result.sp_index = sp_index
        result.fill_value = fill_value
        return result
예제 #44
0
    def convert(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, Index):
            return values.map(try_parse)
        elif isinstance(values, (list, tuple, np.ndarray)):
            return [try_parse(x) for x in values]
        return values
예제 #45
0
    def convert(values, unit, axis):
        def try_parse(values):
            try:
                return _dt_to_float_ordinal(tools.to_datetime(values))
            except Exception:
                return values

        if isinstance(values, (datetime, pydt.date)):
            return _dt_to_float_ordinal(values)
        elif isinstance(values, pydt.time):
            return dates.date2num(values)
        elif (com.is_integer(values) or com.is_float(values)):
            return values
        elif isinstance(values, str):
            return try_parse(values)
        elif isinstance(values, Index):
            return values.map(try_parse)
        elif isinstance(values, (list, tuple, np.ndarray)):
            return [try_parse(x) for x in values]
        return values
예제 #46
0
파일: tile.py 프로젝트: manova/pandas
def _format_label(x, precision=3):
    fmt_str = '%%.%dg' % precision
    if com.is_float(x):
        frac, whole = np.modf(x)
        sgn = '-' if x < 0 else ''
        whole = abs(whole)
        if frac != 0.0:
            val = fmt_str % frac
            if 'e' in val:
                return _trim_zeros(fmt_str % x)
            else:
                val = _trim_zeros(val)
                if '.' in val:
                    return sgn + '.'.join(('%d' % whole, val.split('.')[1]))
                else:
                    return sgn + '.'.join(('%d' % whole, val))
        else:
            return sgn + '%d' % whole
    else:
        return str(x)
예제 #47
0
def _format_label(x, precision=3):
    fmt_str = '%%.%dg' % precision
    if com.is_float(x):
        frac, whole = np.modf(x)
        sgn = '-' if x < 0 else ''
        whole = abs(whole)
        if frac != 0.0:
            val = fmt_str % frac
            if 'e' in val:
                return _trim_zeros(fmt_str % x)
            else:
                val = _trim_zeros(val)
                if '.' in val:
                    return sgn + '.'.join(('%d' % whole, val.split('.')[1]))
                else:
                    return sgn + '.'.join(('%d' % whole, val))
        else:
            return sgn + '%d' % whole
    else:
        return str(x)
예제 #48
0
def _ensure_numeric(x):
    if isinstance(x, np.ndarray):
        if is_integer_dtype(x) or is_bool_dtype(x):
            x = x.astype(np.float64)
        elif is_object_dtype(x):
            try:
                x = x.astype(np.complex128)
            except:
                x = x.astype(np.float64)
            else:
                if not np.any(x.imag):
                    x = x.real
    elif not (is_float(x) or is_integer(x) or is_complex(x)):
        try:
            x = float(x)
        except Exception:
            try:
                x = complex(x)
            except Exception:
                raise TypeError('Could not convert %s to numeric' % str(x))
    return x
예제 #49
0
파일: nanops.py 프로젝트: DavidHum/pandas
def _ensure_numeric(x):
    if isinstance(x, np.ndarray):
        if is_integer_dtype(x) or is_bool_dtype(x):
            x = x.astype(np.float64)
        elif is_object_dtype(x):
            try:
                x = x.astype(np.complex128)
            except:
                x = x.astype(np.float64)
            else:
                if not np.any(x.imag):
                    x = x.real
    elif not (is_float(x) or is_integer(x) or is_complex(x)):
        try:
            x = float(x)
        except Exception:
            try:
                x = complex(x)
            except Exception:
                raise TypeError('Could not convert %s to numeric' % str(x))
    return x
예제 #50
0
    def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
                periods=None, copy=False, name=None, tz=None, **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods,
                                                 freq, kwargs)
        else:
            ordinal, freq = cls._from_arraylike(data, freq, tz)
            data = np.array(ordinal, dtype=np.int64, copy=copy)

        return cls._simple_new(data, name=name, freq=freq)
예제 #51
0
def _convert_index(index):
    # Let's assume the index is homogeneous
    values = np.asarray(index)

    if isinstance(values[0], datetime):
        converted = np.array([(time.mktime(v.timetuple()) + v.microsecond / 1e6) for v in values], dtype=np.float64)
        return converted, "datetime", _tables().Time64Col()
    elif isinstance(values[0], date):
        converted = np.array([time.mktime(v.timetuple()) for v in values], dtype=np.int32)
        return converted, "date", _tables().Time32Col()
    elif isinstance(values[0], basestring):
        converted = np.array(list(values), dtype=np.str_)
        itemsize = converted.dtype.itemsize
        return converted, "string", _tables().StringCol(itemsize)
    elif com.is_integer(values[0]):
        # take a guess for now, hope the values fit
        atom = _tables().Int64Col()
        return np.asarray(values, dtype=np.int64), "integer", atom
    elif com.is_float(values[0]):
        atom = _tables().Float64Col()
        return np.asarray(values, dtype=np.float64), "float", atom
    else:  # pragma: no cover
        atom = _tables().ObjectAtom()
        return np.asarray(values, dtype="O"), "object", atom
예제 #52
0
    def test_is_float(self):
        self.assertTrue(com.is_float(1.1))
        self.assertTrue(com.is_float(np.float64(1.1)))
        self.assertTrue(com.is_float(np.nan))

        self.assertFalse(com.is_float(True))
        self.assertFalse(com.is_float(1))
        self.assertFalse(com.is_float(1 + 3j))
        self.assertFalse(com.is_float(np.bool(False)))
        self.assertFalse(com.is_float(np.bool_(False)))
        self.assertFalse(com.is_float(np.int64(1)))
        self.assertFalse(com.is_float(np.complex128(1 + 3j)))
        self.assertFalse(com.is_float(None))
        self.assertFalse(com.is_float('x'))
        self.assertFalse(com.is_float(datetime(2011, 1, 1)))
        self.assertFalse(com.is_float(np.datetime64('2011-01-01')))
        self.assertFalse(com.is_float(pd.Timestamp('2011-01-01')))
        self.assertFalse(com.is_float(pd.Timestamp('2011-01-01',
                                                   tz='US/Eastern')))
        self.assertFalse(com.is_float(timedelta(1000)))
        self.assertFalse(com.is_float(np.timedelta64(1, 'D')))
        self.assertFalse(com.is_float(pd.Timedelta('1 days')))
예제 #53
0
파일: tdi.py 프로젝트: AbnerZheng/pandas
    def __new__(cls, data=None, unit=None,
                freq=None, start=None, end=None, periods=None,
                copy=False, name=None,
                closed=None, verify_integrity=True, **kwargs):

        if isinstance(data, TimedeltaIndex) and freq is None and name is None:
            if copy:
                data = data.copy()
            return data

        freq_infer = False
        if not isinstance(freq, DateOffset):

            # if a passed freq is None, don't infer automatically
            if freq != 'infer':
                freq = to_offset(freq)
            else:
                freq_infer = True
                freq = None

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None and freq is None:
            raise ValueError("Must provide freq argument if no data is "
                             "supplied")

        if data is None:
            return cls._generate(start, end, periods, name, freq,
                                 closed=closed)

        if unit is not None:
            data = to_timedelta(data, unit=unit, box=False)

        if not isinstance(data, (np.ndarray, Index, ABCSeries)):
            if lib.isscalar(data):
                raise ValueError('TimedeltaIndex() must be called with a '
                                 'collection of some kind, %s was passed'
                                 % repr(data))

        # convert if not already
        if getattr(data, 'dtype', None) != _TD_DTYPE:
            data = to_timedelta(data, unit=unit, box=False)
        elif copy:
            data = np.array(data, copy=True)

        # check that we are matching freqs
        if verify_integrity and len(data) > 0:
            if freq is not None and not freq_infer:
                index = cls._simple_new(data, name=name)
                inferred = index.inferred_freq
                if inferred != freq.freqstr:
                    on_freq = cls._generate(
                        index[0], None, len(index), name, freq)
                    if not np.array_equal(index.asi8, on_freq.asi8):
                        raise ValueError('Inferred frequency {0} from passed '
                                         'timedeltas does not conform to '
                                         'passed frequency {1}'
                                         .format(inferred, freq.freqstr))
                index.freq = freq
                return index

        if freq_infer:
            index = cls._simple_new(data, name=name)
            inferred = index.inferred_freq
            if inferred:
                index.freq = to_offset(inferred)
            return index

        return cls._simple_new(data, name=name, freq=freq)
예제 #54
0
파일: indexing.py 프로젝트: dhm116/pandas
 def _is_valid_index(x):
     return (com.is_integer(x) or com.is_float(x)
             and np.allclose(x, int(x), rtol=_eps, atol=0))
예제 #55
0
파일: format.py 프로젝트: huning2009/pandas
 def _format_value(self, val):
     if lib.checknull(val):
         val = self.na_rep
     if self.float_format is not None and com.is_float(val):
         val = float(self.float_format % val)
     return val
예제 #56
0
파일: indexing.py 프로젝트: yunh-net/pandas
 def _is_valid_index(x):
     return com.is_float(x)
예제 #57
0
파일: indexing.py 프로젝트: yunh-net/pandas
 def _is_valid_index(x):
     return (com.is_integer(x) or com.is_float(x)
             and np.allclose(x, int(x), rtol=_eps, atol=0))
예제 #58
0
    def __new__(cls, data=None, unit=None,
                freq=None, start=None, end=None, periods=None,
                copy=False, name=None,
                closed=None, verify_integrity=True, **kwargs):

        if isinstance(data, TimedeltaIndex) and freq is None and name is None:
            if copy:
                data = data.copy()
            return data

        freq_infer = False
        if not isinstance(freq, DateOffset):

            # if a passed freq is None, don't infer automatically
            if freq != 'infer':
                freq = to_offset(freq)
            else:
                freq_infer = True
                freq = None

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None and freq is None:
            raise ValueError("Must provide freq argument if no data is "
                             "supplied")

        if data is None:
            return cls._generate(start, end, periods, name, freq,
                                 closed=closed)

        if unit is not None:
            data = to_timedelta(data, unit=unit, box=False)

        if not isinstance(data, (np.ndarray, Index, ABCSeries)):
            if lib.isscalar(data):
                raise ValueError('TimedeltaIndex() must be called with a '
                                 'collection of some kind, %s was passed'
                                 % repr(data))

        # convert if not already
        if getattr(data, 'dtype', None) != _TD_DTYPE:
            data = to_timedelta(data, unit=unit, box=False)
        elif copy:
            data = np.array(data, copy=True)

        # check that we are matching freqs
        if verify_integrity and len(data) > 0:
            if freq is not None and not freq_infer:
                index = cls._simple_new(data, name=name)
                inferred = index.inferred_freq
                if inferred != freq.freqstr:
                    on_freq = cls._generate(
                        index[0], None, len(index), name, freq)
                    if not np.array_equal(index.asi8, on_freq.asi8):
                        raise ValueError('Inferred frequency {0} from passed '
                                         'timedeltas does not conform to '
                                         'passed frequency {1}'
                                         .format(inferred, freq.freqstr))
                index.freq = freq
                return index

        if freq_infer:
            index = cls._simple_new(data, name=name)
            inferred = index.inferred_freq
            if inferred:
                index.freq = to_offset(inferred)
            return index

        return cls._simple_new(data, name=name, freq=freq)
예제 #59
0
 def default_display_func(x):
     if com.is_float(x):
         return '{:>.{precision}g}'.format(x, precision=self.precision)
     else:
         return x
예제 #60
0
파일: index.py 프로젝트: joaonatali/pandas
    def __new__(cls,
                data=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                copy=False,
                name=None,
                tz=None,
                verify_integrity=True,
                normalize=False,
                **kwds):

        dayfirst = kwds.pop('dayfirst', None)
        yearfirst = kwds.pop('yearfirst', None)
        warn = False
        if 'offset' in kwds and kwds['offset']:
            freq = kwds['offset']
            warn = True

        freq_infer = False
        if not isinstance(freq, DateOffset):
            if freq != 'infer':
                freq = to_offset(freq)
            else:
                freq_infer = True
                freq = None

        if warn:
            import warnings
            warnings.warn(
                "parameter 'offset' is deprecated, "
                "please use 'freq' instead", FutureWarning)

        offset = freq

        if periods is not None:
            if com.is_float(periods):
                periods = int(periods)
            elif not com.is_integer(periods):
                raise ValueError('Periods must be a number, got %s' %
                                 str(periods))

        if data is None and offset is None:
            raise ValueError("Must provide freq argument if no data is "
                             "supplied")

        if data is None:
            return cls._generate(start,
                                 end,
                                 periods,
                                 name,
                                 offset,
                                 tz=tz,
                                 normalize=normalize)

        if not isinstance(data, np.ndarray):
            if np.isscalar(data):
                raise ValueError('DatetimeIndex() must be called with a '
                                 'collection of some kind, %s was passed' %
                                 repr(data))

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data, dtype='O')

            # try a few ways to make it datetime64
            if lib.is_string_array(data):
                data = _str_to_dt_array(data,
                                        offset,
                                        dayfirst=dayfirst,
                                        yearfirst=yearfirst)
            else:
                data = tools.to_datetime(data)
                data.offset = offset
                if isinstance(data, DatetimeIndex):
                    if name is not None:
                        data.name = name
                    return data

        if issubclass(data.dtype.type, basestring):
            subarr = _str_to_dt_array(data,
                                      offset,
                                      dayfirst=dayfirst,
                                      yearfirst=yearfirst)
        elif issubclass(data.dtype.type, np.datetime64):
            if isinstance(data, DatetimeIndex):
                if tz is None:
                    tz = data.tz

                subarr = data.values

                if offset is None:
                    offset = data.offset
                    verify_integrity = False
            else:
                if data.dtype != _NS_DTYPE:
                    subarr = lib.cast_to_nanoseconds(data)
                else:
                    subarr = data
        elif data.dtype == _INT64_DTYPE:
            if isinstance(data, Int64Index):
                raise TypeError('cannot convert Int64Index->DatetimeIndex')
            if copy:
                subarr = np.asarray(data, dtype=_NS_DTYPE)
            else:
                subarr = data.view(_NS_DTYPE)
        else:
            try:
                subarr = tools.to_datetime(data)
            except ValueError:
                # tz aware
                subarr = tools.to_datetime(data, utc=True)

            if not np.issubdtype(subarr.dtype, np.datetime64):
                raise TypeError('Unable to convert %s to datetime dtype' %
                                str(data))

        if isinstance(subarr, DatetimeIndex):
            if tz is None:
                tz = subarr.tz
        else:
            if tz is not None:
                tz = tools._maybe_get_tz(tz)

                if (not isinstance(data, DatetimeIndex)
                        or getattr(data, 'tz', None) is None):
                    # Convert tz-naive to UTC
                    ints = subarr.view('i8')
                    subarr = lib.tz_localize_to_utc(ints, tz)

                subarr = subarr.view(_NS_DTYPE)

        subarr = subarr.view(cls)
        subarr.name = name
        subarr.offset = offset
        subarr.tz = tz

        if verify_integrity and len(subarr) > 0:
            if offset is not None and not freq_infer:
                inferred = subarr.inferred_freq
                if inferred != offset.freqstr:
                    raise ValueError('Dates do not conform to passed '
                                     'frequency')

        if freq_infer:
            inferred = subarr.inferred_freq
            if inferred:
                subarr.offset = to_offset(inferred)

        return subarr