def _init_dict(self, data, axes, dtype=None): items, major, minor = axes # prefilter if items passed if items is not None: items = _ensure_index(items) data = dict((k, v) for k, v in data.iteritems() if k in items) else: items = Index(_try_sort(data.keys())) for k, v in data.iteritems(): if not isinstance(v, DataFrame): data[k] = DataFrame(v) if major is None: indexes = [v.index for v in data.values()] major = _union_indexes(indexes) if minor is None: indexes = [v.columns for v in data.values()] minor = _union_indexes(indexes) axes = [items, major, minor] reshaped_data = data.copy() # shallow # homogenize item_shape = (1, len(major), len(minor)) for k in items: if k not in data: values = np.empty(item_shape, dtype=dtype) values.fill(np.nan) reshaped_data[k] = values else: v = data[k] v = v.reindex(index=major, columns=minor, copy=False) if dtype is not None: v = v.astype(dtype) values = v.values shape = values.shape reshaped_data[k] = values.reshape((1,) + shape) # segregates dtypes and forms blocks matching to columns blocks = form_blocks(reshaped_data, axes) mgr = BlockManager(blocks, axes).consolidate() return mgr
def _get_combined_index(frames, intersect=False): from pandas.core.frame import _union_indexes indexes = _get_distinct_indexes([df.index for df in frames.values()]) if len(indexes) == 1: return indexes[0] if intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) return index union = _union_indexes(indexes) return Index(union)