예제 #1
0
파일: ewm.py 프로젝트: samize/pandas
 def __init__(
     self,
     obj: NDFrame,
     com: float | None = None,
     span: float | None = None,
     halflife: float | TimedeltaConvertibleTypes | None = None,
     alpha: float | None = None,
     min_periods: int | None = 0,
     adjust: bool = True,
     ignore_na: bool = False,
     axis: Axis = 0,
     times: str | np.ndarray | NDFrame | None = None,
     engine: str = "numba",
     engine_kwargs: dict[str, bool] | None = None,
     *,
     selection=None,
 ):
     if times is not None:
         raise NotImplementedError(
             "times is not implemented with online operations."
         )
     super().__init__(
         obj=obj,
         com=com,
         span=span,
         halflife=halflife,
         alpha=alpha,
         min_periods=min_periods,
         adjust=adjust,
         ignore_na=ignore_na,
         axis=axis,
         times=times,
         selection=selection,
     )
     self._mean = EWMMeanState(
         self._com, self.adjust, self.ignore_na, self.axis, obj.shape
     )
     if maybe_use_numba(engine):
         self.engine = engine
         self.engine_kwargs = engine_kwargs
     else:
         raise ValueError("'numba' is the only supported engine")
예제 #2
0
파일: ewm.py 프로젝트: stjordanis/pandas
class OnlineExponentialMovingWindow(ExponentialMovingWindow):
    def __init__(
        self,
        obj: FrameOrSeries,
        com: float | None = None,
        span: float | None = None,
        halflife: float | TimedeltaConvertibleTypes | None = None,
        alpha: float | None = None,
        min_periods: int | None = 0,
        adjust: bool = True,
        ignore_na: bool = False,
        axis: Axis = 0,
        times: str | np.ndarray | FrameOrSeries | None = None,
        engine: str = "numba",
        engine_kwargs: dict[str, bool] | None = None,
        *,
        selection=None,
    ):
        if times is not None:
            raise NotImplementedError(
                "times is not implemented with online operations.")
        super().__init__(
            obj=obj,
            com=com,
            span=span,
            halflife=halflife,
            alpha=alpha,
            min_periods=min_periods,
            adjust=adjust,
            ignore_na=ignore_na,
            axis=axis,
            times=times,
            selection=selection,
        )
        self._mean = EWMMeanState(self._com, self.adjust, self.ignore_na,
                                  self.axis, obj.shape)
        if maybe_use_numba(engine):
            self.engine = engine
            self.engine_kwargs = engine_kwargs
        else:
            raise ValueError("'numba' is the only supported engine")

    def reset(self):
        """
        Reset the state captured by `update` calls.
        """
        self._mean.reset()

    def aggregate(self, func, *args, **kwargs):
        return NotImplementedError

    def std(self, bias: bool = False, *args, **kwargs):
        return NotImplementedError

    def corr(
        self,
        other: DataFrame | Series | None = None,
        pairwise: bool | None = None,
        **kwargs,
    ):
        return NotImplementedError

    def cov(
        self,
        other: DataFrame | Series | None = None,
        pairwise: bool | None = None,
        bias: bool = False,
        **kwargs,
    ):
        return NotImplementedError

    def var(self, bias: bool = False, *args, **kwargs):
        return NotImplementedError

    def mean(self, *args, update=None, update_times=None, **kwargs):
        """
        Calculate an online exponentially weighted mean.

        Parameters
        ----------
        update: DataFrame or Series, default None
            New values to continue calculating the
            exponentially weighted mean from the last values and weights.
            Values should be float64 dtype.

            ``update`` needs to be ``None`` the first time the
            exponentially weighted mean is calculated.

        update_times: Series or 1-D np.ndarray, default None
            New times to continue calculating the
            exponentially weighted mean from the last values and weights.
            If ``None``, values are assumed to be evenly spaced
            in time.
            This feature is currently unsupported.

        Returns
        -------
        DataFrame or Series

        Examples
        --------
        >>> df = pd.DataFrame({"a": range(5), "b": range(5, 10)})
        >>> online_ewm = df.head(2).ewm(0.5).online()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        >>> online_ewm.mean(update=df.tail(3))
                  a         b
        2  1.615385  6.615385
        3  2.550000  7.550000
        4  3.520661  8.520661
        >>> online_ewm.reset()
        >>> online_ewm.mean()
              a     b
        0  0.00  5.00
        1  0.75  5.75
        """
        result_kwargs = {}
        is_frame = True if self._selected_obj.ndim == 2 else False
        if update_times is not None:
            raise NotImplementedError("update_times is not implemented.")
        else:
            update_deltas = np.ones(max(
                self._selected_obj.shape[self.axis - 1] - 1, 0),
                                    dtype=np.float64)
        if update is not None:
            if self._mean.last_ewm is None:
                raise ValueError(
                    "Must call mean with update=None first before passing update"
                )
            result_from = 1
            result_kwargs["index"] = update.index
            if is_frame:
                last_value = self._mean.last_ewm[np.newaxis, :]
                result_kwargs["columns"] = update.columns
            else:
                last_value = self._mean.last_ewm
                result_kwargs["name"] = update.name
            np_array = np.concatenate((last_value, update.to_numpy()))
        else:
            result_from = 0
            result_kwargs["index"] = self._selected_obj.index
            if is_frame:
                result_kwargs["columns"] = self._selected_obj.columns
            else:
                result_kwargs["name"] = self._selected_obj.name
            np_array = self._selected_obj.astype(np.float64).to_numpy()
        ewma_func = generate_online_numba_ewma_func(self.engine_kwargs)
        result = self._mean.run_ewm(
            np_array if is_frame else np_array[:, np.newaxis],
            update_deltas,
            self.min_periods,
            ewma_func,
        )
        if not is_frame:
            result = result.squeeze()
        result = result[result_from:]
        result = self._selected_obj._constructor(result, **result_kwargs)
        return result