def fillforward(df): """ Take a lower than day freq, and map it to business days. This is to make mapping to a daily chart easy and helps handle business days that vacations. """ return df.asfreq(datetools.BDay(), method='pad')
import re import datetime from pandas import datetools as pandas_datetools import numpy as np from statsmodels.compatnp.py3k import asstr #NOTE: All of these frequencies assume end of period (except wrt time) try: from pandas.tseries.frequencies import get_offset class _freq_to_pandas_class(object): # being lazy, don't want to replace dictionary below def __getitem__(self, key): return get_offset(key) _freq_to_pandas = _freq_to_pandas_class() except ImportError, err: _freq_to_pandas = {'B' : pandas_datetools.BDay(1), 'D' : pandas_datetools.day, 'W' : pandas_datetools.Week(weekday=6), 'M' : pandas_datetools.monthEnd, 'A' : pandas_datetools.yearEnd, 'Q' : pandas_datetools.quarterEnd} def _index_date(date, dates): """ Gets the index number of a date in a date index. Works in-sample and will return one past the end of the dates since prediction can start one out. Currently used to validate prediction start dates.
from pandas import datetools as pandas_datetools import numpy as np #NOTE: All of these frequencies assume end of period (except wrt time) try: from pandas.tseries.frequencies import get_offset class _freq_to_pandas_class(object): # being lazy, don't want to replace dictionary below def __getitem__(self, key): return get_offset(key) _freq_to_pandas = _freq_to_pandas_class() except ImportError, err: _freq_to_pandas = { 'B': pandas_datetools.BDay(1), 'D': pandas_datetools.day, 'W': pandas_datetools.Week(weekday=6), 'M': pandas_datetools.monthEnd, 'A': pandas_datetools.yearEnd, 'Q': pandas_datetools.quarterEnd } def _index_date(date, dates): """ Gets the index number of a date in a date index. Works in-sample and will return one past the end of the dates since prediction can start one out.