예제 #1
0
    def test_coercing_dates_outside_of_datetime64_ns_bounds(self):
        invalid_dates = [
            datetime.date(1000, 1, 1),
            datetime.datetime(1000, 1, 1),
            '1000-01-01',
            'Jan 1, 1000',
            np.datetime64('1000-01-01'),
        ]

        for invalid_date in invalid_dates:
            self.assertRaises(
                ValueError,
                tslib.array_to_datetime,
                np.array([invalid_date], dtype='object'),
                errors='raise',
            )
            self.assert_numpy_array_equal(
                tslib.array_to_datetime(
                    np.array([invalid_date], dtype='object'),
                    errors='coerce'),
                np.array([tslib.iNaT], dtype='M8[ns]')
            )

        arr = np.array(['1/1/1000', '1/1/2000'], dtype=object)
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, errors='coerce'),
            np.array(
                    [
                        tslib.iNaT,
                        '2000-01-01T00:00:00.000000000-0000'
                    ],
                    dtype='M8[ns]'
            )
        )
예제 #2
0
    def test_coercing_dates_outside_of_datetime64_ns_bounds(self):
        invalid_dates = [
            datetime.date(1000, 1, 1),
            datetime.datetime(1000, 1, 1),
            "1000-01-01",
            "Jan 1, 1000",
            np.datetime64("1000-01-01"),
        ]

        for invalid_date in invalid_dates:
            self.assertRaises(
                ValueError, tslib.array_to_datetime, np.array([invalid_date], dtype="object"), coerce=False, raise_=True
            )
            self.assertTrue(
                np.array_equal(
                    tslib.array_to_datetime(np.array([invalid_date], dtype="object"), coerce=True),
                    np.array([tslib.iNaT], dtype="M8[ns]"),
                )
            )

        arr = np.array(["1/1/1000", "1/1/2000"], dtype=object)
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, coerce=True),
            np.array([tslib.iNaT, "2000-01-01T00:00:00.000000000-0000"], dtype="M8[ns]"),
        )
예제 #3
0
    def test_parsing_valid_dates(self):
        arr = np.array(['01-01-2013', '01-02-2013'], dtype=object)
        self.assert_(
            np.array_equal(
                tslib.array_to_datetime(arr),
                np.array(
                    [
                        '2013-01-01T00:00:00.000000000-0000',
                        '2013-01-02T00:00:00.000000000-0000'
                    ],
                    dtype='M8[ns]'
                )
            )
        )

        arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object)
        self.assert_(
            np.array_equal(
                tslib.array_to_datetime(arr),
                np.array(
                    [
                        '2013-09-16T00:00:00.000000000-0000',
                        '2013-09-17T00:00:00.000000000-0000'
                    ],
                    dtype='M8[ns]'
                )
            )
        )
예제 #4
0
    def test_coercing_dates_outside_of_datetime64_ns_bounds(self):
        invalid_dates = [
            datetime.date(1000, 1, 1),
            datetime.datetime(1000, 1, 1),
            '1000-01-01',
            'Jan 1, 1000',
            np.datetime64('1000-01-01'),
        ]

        for invalid_date in invalid_dates:
            self.assertRaises(
                ValueError,
                tslib.array_to_datetime,
                np.array([invalid_date], dtype='object'),
                errors='raise',
            )
            self.assert_numpy_array_equal(
                tslib.array_to_datetime(np.array([invalid_date],
                                                 dtype='object'),
                                        errors='coerce'),
                np.array([tslib.iNaT], dtype='M8[ns]'))

        arr = np.array(['1/1/1000', '1/1/2000'], dtype=object)
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, errors='coerce'),
            np_array_datetime64_compat(
                [tslib.iNaT, '2000-01-01T00:00:00.000000000-0000'],
                dtype='M8[ns]'))
예제 #5
0
    def test_parsing_valid_dates(self):
        arr = np.array(['01-01-2013', '01-02-2013'], dtype=object)
        self.assert_(
            np.array_equal(
                tslib.array_to_datetime(arr),
                np.array(
                    [
                        '2013-01-01T00:00:00.000000000-0000',
                        '2013-01-02T00:00:00.000000000-0000'
                    ],
                    dtype='M8[ns]'
                )
            )
        )

        arr = np.array(['Mon Sep 16 2013', 'Tue Sep 17 2013'], dtype=object)
        self.assert_(
            np.array_equal(
                tslib.array_to_datetime(arr),
                np.array(
                    [
                        '2013-09-16T00:00:00.000000000-0000',
                        '2013-09-17T00:00:00.000000000-0000'
                    ],
                    dtype='M8[ns]'
                )
            )
        )
예제 #6
0
    def test_dates_outside_of_datetime64_ns_bounds(self):
        # These datetimes are outside of the bounds of the
        # datetime64[ns] bounds, so they cannot be converted to
        # datetimes
        arr = np.array(['1/1/1676', '1/2/1676'], dtype=object)
        self.assert_(np.array_equal(tslib.array_to_datetime(arr), arr))

        arr = np.array(['1/1/2263', '1/2/2263'], dtype=object)
        self.assert_(np.array_equal(tslib.array_to_datetime(arr), arr))
예제 #7
0
    def test_dates_outside_of_datetime64_ns_bounds(self):
        # These datetimes are outside of the bounds of the
        # datetime64[ns] bounds, so they cannot be converted to
        # datetimes
        arr = np.array(['1/1/1676', '1/2/1676'], dtype=object)
        self.assert_(np.array_equal(tslib.array_to_datetime(arr), arr))

        arr = np.array(['1/1/2263', '1/2/2263'], dtype=object)
        self.assert_(np.array_equal(tslib.array_to_datetime(arr), arr))
예제 #8
0
    def test_number_looking_strings_not_into_datetime(self):
        # #4601
        # These strings don't look like datetimes so they shouldn't be
        # attempted to be converted
        arr = np.array(["-352.737091", "183.575577"], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)

        arr = np.array(["1", "2", "3", "4", "5"], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)
예제 #9
0
    def test_number_looking_strings_not_into_datetime(self):
        # #4601
        # These strings don't look like datetimes so they shouldn't be
        # attempted to be converted
        arr = np.array(['-352.737091', '183.575577'], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)

        arr = np.array(['1', '2', '3', '4', '5'], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)
예제 #10
0
파일: test_tslib.py 프로젝트: vikram/pandas
    def test_number_looking_strings_not_into_datetime(self):
        # #4601
        # These strings don't look like datetimes so they shouldn't be
        # attempted to be converted
        arr = np.array(['-352.737091', '183.575577'], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)

        arr = np.array(['1', '2', '3', '4', '5'], dtype=object)
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)
예제 #11
0
    def test_parsing_valid_dates(self):
        arr = np.array(["01-01-2013", "01-02-2013"], dtype=object)
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr),
            np.array(["2013-01-01T00:00:00.000000000-0000", "2013-01-02T00:00:00.000000000-0000"], dtype="M8[ns]"),
        )

        arr = np.array(["Mon Sep 16 2013", "Tue Sep 17 2013"], dtype=object)
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr),
            np.array(["2013-09-16T00:00:00.000000000-0000", "2013-09-17T00:00:00.000000000-0000"], dtype="M8[ns]"),
        )
예제 #12
0
    def test_coerce_of_invalid_datetimes(self):
        arr = np.array(["01-01-2013", "not_a_date", "1"], dtype=object)

        # Without coercing, the presence of any invalid dates prevents
        # any values from being converted
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)

        # With coercing, the invalid dates becomes iNaT
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, coerce=True),
            np.array(["2013-01-01T00:00:00.000000000-0000", tslib.iNaT, tslib.iNaT], dtype="M8[ns]"),
        )
예제 #13
0
    def test_coerce_of_invalid_datetimes(self):
        arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object)

        # Without coercing, the presence of any invalid dates prevents
        # any values from being converted
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr), arr)

        # With coercing, the invalid dates becomes iNaT
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, coerce=True),
            np.array(
                ['2013-01-01T00:00:00.000000000-0000', tslib.iNaT, tslib.iNaT],
                dtype='M8[ns]'))
예제 #14
0
    def test_parsing_timezone_offsets(self):
        # All of these datetime strings with offsets are equivalent
        # to the same datetime after the timezone offset is added
        dt_strings = [
            "01-01-2013 08:00:00+08:00",
            "2013-01-01T08:00:00.000000000+0800",
            "2012-12-31T16:00:00.000000000-0800",
            "12-31-2012 23:00:00-01:00",
        ]

        expected_output = tslib.array_to_datetime(np.array(["01-01-2013 00:00:00"], dtype=object))

        for dt_string in dt_strings:
            self.assert_numpy_array_equal(tslib.array_to_datetime(np.array([dt_string], dtype=object)), expected_output)
예제 #15
0
    def test_parsing_timezone_offsets(self):
        # All of these datetime strings with offsets are equivalent
        # to the same datetime after the timezone offset is added
        dt_strings = [
            '01-01-2013 08:00:00+08:00', '2013-01-01T08:00:00.000000000+0800',
            '2012-12-31T16:00:00.000000000-0800', '12-31-2012 23:00:00-01:00'
        ]

        expected_output = tslib.array_to_datetime(
            np.array(['01-01-2013 00:00:00'], dtype=object))

        for dt_string in dt_strings:
            self.assert_numpy_array_equal(
                tslib.array_to_datetime(np.array([dt_string], dtype=object)),
                expected_output)
예제 #16
0
파일: ops.py 프로젝트: agijsberts/pandas
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import to_timedelta

        coerce = True
        if not is_list_like(values):
            values = np.array([values])
        inferred_type = lib.infer_dtype(values)

        if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if (other is not None and other.dtype == 'timedelta64[ns]' and
                    all(isnull(v) for v in values)):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT

            # a datelike
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
            elif not (isinstance(values, (np.ndarray, pd.Series)) and
                      is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = to_timedelta(values, coerce=coerce)
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif isinstance(values[0], pd.DateOffset):
            # handle DateOffsets
            os = np.array([getattr(v, 'delta', None) for v in values])
            mask = isnull(os)
            if mask.any():
                raise TypeError("cannot use a non-absolute DateOffset in "
                                "datetime/timedelta operations [{0}]".format(
                                    ', '.join([com.pprint_thing(v)
                                               for v in values[mask]])))
            values = to_timedelta(os, coerce=coerce)
        elif inferred_type == 'floating':

            # all nan, so ok, use the other dtype (e.g. timedelta or datetime)
            if isnull(values).all():
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT
            else:
                raise TypeError(
                    'incompatible type [{0}] for a datetime/timedelta '
                    'operation'.format(np.array(values).dtype))
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(np.array(values).dtype))

        return values
예제 #17
0
 def calc(carg):
     # calculate the actual result
     carg = carg.astype(object)
     parsed = lib.try_parse_year_month_day(carg / 10000,
                                           carg / 100 % 100,
                                           carg % 100)
     return tslib.array_to_datetime(parsed, errors=errors)
예제 #18
0
def make_block(values, items, ref_items):
    dtype = values.dtype
    vtype = dtype.type
    klass = None

    if issubclass(vtype, np.floating):
        klass = FloatBlock
    elif issubclass(vtype, np.complexfloating):
        klass = ComplexBlock
    elif issubclass(vtype, np.datetime64):
        klass = DatetimeBlock
    elif issubclass(vtype, np.integer):
        if vtype != np.int64:
            values = values.astype("i8")
        klass = IntBlock
    elif dtype == np.bool_:
        klass = BoolBlock

    # try to infer a datetimeblock
    if klass is None and np.prod(values.shape):
        flat = values.flatten()
        inferred_type = lib.infer_dtype(flat)
        if inferred_type == "datetime":

            # we have an object array that has been inferred as datetime, so convert it
            try:
                values = tslib.array_to_datetime(flat).reshape(values.shape)
                klass = DatetimeBlock
            except:  # it already object, so leave it
                pass

    if klass is None:
        klass = ObjectBlock

    return klass(values, items, ref_items, ndim=values.ndim)
예제 #19
0
파일: ops.py 프로젝트: ubdsgroup/wikienergy
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import to_timedelta

        coerce = True
        if not is_list_like(values):
            values = np.array([values])
        inferred_type = lib.infer_dtype(values)

        if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if (other is not None and other.dtype == 'timedelta64[ns]'
                    and all(isnull(v) for v in values)):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = tslib.iNaT

            # a datelike
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
            elif not (isinstance(values, (np.ndarray, pd.Series))
                      and com.is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = to_timedelta(values, coerce=coerce)
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif isinstance(values[0], pd.DateOffset):
            # handle DateOffsets
            os = np.array([getattr(v, 'delta', None) for v in values])
            mask = isnull(os)
            if mask.any():
                raise TypeError(
                    "cannot use a non-absolute DateOffset in "
                    "datetime/timedelta operations [{0}]".format(', '.join(
                        [com.pprint_thing(v) for v in values[mask]])))
            values = to_timedelta(os, coerce=coerce)
        elif inferred_type == 'floating':

            # all nan, so ok, use the other dtype (e.g. timedelta or datetime)
            if isnull(values).all():
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = tslib.iNaT
            else:
                raise TypeError(
                    'incompatible type [{0}] for a datetime/timedelta '
                    'operation'.format(np.array(values).dtype))
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(np.array(values).dtype))

        return values
예제 #20
0
파일: tools.py 프로젝트: pramodjha/Project2
 def calc(carg):
     # calculate the actual result
     carg = carg.astype(object)
     parsed = lib.try_parse_year_month_day(carg / 10000,
                                           carg / 100 % 100,
                                           carg % 100)
     return tslib.array_to_datetime(parsed, errors=errors)
예제 #21
0
파일: tools.py 프로젝트: X1mengYu/pandas
    def _convert_listlike(arg, box):

        if isinstance(arg, (list,tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError as e:
                    values, tz = tslib.datetime_to_datetime64(arg)
                    return DatetimeIndex._simple_new(values, None, tz=tz)

            return arg

        arg = com._ensure_object(arg)
        try:
            if format is not None:
                result = tslib.array_strptime(arg, format)
            else:
                result = tslib.array_to_datetime(arg, raise_=errors == 'raise',
                                                 utc=utc, dayfirst=dayfirst,
                                                 coerce=coerce, unit=unit)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #22
0
파일: ops.py 프로젝트: ghl3/pandas
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import to_timedelta

        ovalues = values
        if not is_list_like(values):
            values = np.array([values])

        inferred_type = lib.infer_dtype(values)

        if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if (other is not None and other.dtype == 'timedelta64[ns]' and
                    all(isnull(v) for v in values)):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT

            # a datelike
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
            # datetime with tz
            elif isinstance(ovalues, datetime.datetime) and hasattr(ovalues,'tz'):
                values = pd.DatetimeIndex(values)
            # datetime array with tz
            elif com.is_datetimetz(values):
                if isinstance(values, pd.Series):
                    values = values._values
            elif not (isinstance(values, (np.ndarray, pd.Series)) and
                      is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = to_timedelta(values, errors='coerce')
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif inferred_type == 'floating':
            # all nan, so ok, use the other dtype (e.g. timedelta or datetime)
            if isnull(values).all():
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT
            else:
                raise TypeError(
                    'incompatible type [{0}] for a datetime/timedelta '
                    'operation'.format(np.array(values).dtype))
        elif self._is_offset(values):
            return values
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(np.array(values).dtype))

        return values
예제 #23
0
파일: ops.py 프로젝트: spencerlyon2/pandas
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import _possibly_cast_to_timedelta

        coerce = "compat" if pd._np_version_under1p7 else True
        if not is_list_like(values):
            values = np.array([values])
        inferred_type = lib.infer_dtype(values)

        if inferred_type in ("datetime64", "datetime", "date", "time"):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if other is not None and other.dtype == "timedelta64[ns]" and all(isnull(v) for v in values):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = tslib.iNaT

            # a datetlike
            elif not (isinstance(values, (pa.Array, pd.Series)) and com.is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
        elif inferred_type in ("timedelta", "timedelta64"):
            # have a timedelta, convert to to ns here
            values = _possibly_cast_to_timedelta(values, coerce=coerce)
        elif inferred_type == "integer":
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == "m":
                values = values.astype("timedelta64[ns]")
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ("__truediv__", "__div__", "__mul__"):
                raise TypeError("incompatible type for a datetime/timedelta " "operation [{0}]".format(name))
        elif isinstance(values[0], pd.DateOffset):
            # handle DateOffsets
            os = pa.array([getattr(v, "delta", None) for v in values])
            mask = isnull(os)
            if mask.any():
                raise TypeError(
                    "cannot use a non-absolute DateOffset in "
                    "datetime/timedelta operations [{0}]".format(", ".join([com.pprint_thing(v) for v in values[mask]]))
                )
            values = _possibly_cast_to_timedelta(os, coerce=coerce)
        elif inferred_type == "floating":

            # all nan, so ok, use the other dtype (e.g. timedelta or datetime)
            if isnull(values).all():
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = tslib.iNaT
            else:
                raise TypeError(
                    "incompatible type [{0}] for a datetime/timedelta " "operation".format(pa.array(values).dtype)
                )
        else:
            raise TypeError(
                "incompatible type [{0}] for a datetime/timedelta" " operation".format(pa.array(values).dtype)
            )

        return values
예제 #24
0
    def test_string_na_nat_conversion(self):
        # GH #999, #858

        from pandas.compat import parse_date

        strings = np.array(['1/1/2000', '1/2/2000', np.nan,
                            '1/4/2000, 12:34:56'], dtype=object)

        expected = np.empty(4, dtype='M8[ns]')
        for i, val in enumerate(strings):
            if isnull(val):
                expected[i] = tslib.iNaT
            else:
                expected[i] = parse_date(val)

        result = tslib.array_to_datetime(strings)
        tm.assert_almost_equal(result, expected)

        result2 = to_datetime(strings)
        tm.assertIsInstance(result2, DatetimeIndex)
        tm.assert_numpy_array_equal(result, result2.values)

        malformed = np.array(['1/100/2000', np.nan], dtype=object)

        # GH 10636, default is now 'raise'
        self.assertRaises(ValueError,
                          lambda: to_datetime(malformed, errors='raise'))

        result = to_datetime(malformed, errors='ignore')
        tm.assert_numpy_array_equal(result, malformed)

        self.assertRaises(ValueError, to_datetime, malformed, errors='raise')

        idx = ['a', 'b', 'c', 'd', 'e']
        series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan,
                         '1/5/2000'], index=idx, name='foo')
        dseries = Series([to_datetime('1/1/2000'), np.nan,
                          to_datetime('1/3/2000'), np.nan,
                          to_datetime('1/5/2000')], index=idx, name='foo')

        result = to_datetime(series)
        dresult = to_datetime(dseries)

        expected = Series(np.empty(5, dtype='M8[ns]'), index=idx)
        for i in range(5):
            x = series[i]
            if isnull(x):
                expected[i] = tslib.iNaT
            else:
                expected[i] = to_datetime(x)

        assert_series_equal(result, expected, check_names=False)
        self.assertEqual(result.name, 'foo')

        assert_series_equal(dresult, expected, check_names=False)
        self.assertEqual(dresult.name, 'foo')
예제 #25
0
    def test_coerce_of_invalid_datetimes(self):
        arr = np.array(['01-01-2013', 'not_a_date', '1'], dtype=object)

        # Without coercing, the presence of any invalid dates prevents
        # any values from being converted
        self.assert_numpy_array_equal(tslib.array_to_datetime(arr,errors='ignore'), arr)

        # With coercing, the invalid dates becomes iNaT
        self.assert_numpy_array_equal(
            tslib.array_to_datetime(arr, errors='coerce'),
            np.array(
                    [
                        '2013-01-01T00:00:00.000000000-0000',
                        tslib.iNaT,
                        tslib.iNaT
                    ],
                    dtype='M8[ns]'
            )
        )
예제 #26
0
파일: common.py 프로젝트: trwhitcomb/pandas
def _possibly_cast_to_datetime(value, dtype, coerce = False):
    """ try to cast the array/value to a datetimelike dtype, converting float nan to iNaT """

    if isinstance(dtype, basestring):
        dtype = np.dtype(dtype)

    if dtype is not None and is_datetime64_dtype(dtype):
        if np.isscalar(value):
            if value == tslib.iNaT or isnull(value):
                value = tslib.iNaT
        else:
            value = np.array(value)

            # have a scalar array-like (e.g. NaT)
            if value.ndim == 0:
                value = tslib.iNaT

            # we have an array of datetime & nulls
            elif np.prod(value.shape):
                try:
                    value = tslib.array_to_datetime(value, coerce = coerce)
                except:
                    pass

    elif dtype is None:
        # we might have a array (or single object) that is datetime like, and no dtype is passed
        # don't change the value unless we find a datetime set
        v = value
        if not (is_list_like(v) or hasattr(v,'len')):
            v = [ v ]
        if len(v):
            inferred_type = lib.infer_dtype(v)
            if inferred_type == 'datetime':
                try:
                    value = tslib.array_to_datetime(np.array(v))
                except:
                    pass

    return value
예제 #27
0
파일: tools.py 프로젝트: huning2009/pandas
    def _convert_f(arg):
        arg = com._ensure_object(arg)

        try:
            result = tslib.array_to_datetime(arg, raise_=errors == 'raise',
                                             utc=utc, dayfirst=dayfirst)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result
        except ValueError, e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #28
0
    def _convert_f(arg):
        arg = com._ensure_object(arg)

        try:
            result = tslib.array_to_datetime(arg, raise_=errors == 'raise',
                                             utc=utc, dayfirst=dayfirst)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result
        except ValueError, e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #29
0
파일: tools.py 프로젝트: Barneyjm/pandas
    def _convert_listlike(arg, box):

        if isinstance(arg, (list,tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError:
                    pass

            return arg

        arg = com._ensure_object(arg)
        try:
            if format is not None:
                result = None

                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg)
                    except:
                        raise ValueError("cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg, format, coerce=coerce)
                    except (tslib.OutOfBoundsDatetime):
                        if errors == 'raise':
                            raise
                        result = arg
            else:
                result = tslib.array_to_datetime(arg, raise_=errors == 'raise',
                                                 utc=utc, dayfirst=dayfirst,
                                                 coerce=coerce, unit=unit)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #30
0
파일: tools.py 프로젝트: pannpers/pandas
    def _convert_listlike(arg, box):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError as e:
                    values, tz = tslib.datetime_to_datetime64(arg)
                    return DatetimeIndex._simple_new(values, None, tz=tz)

            return arg

        arg = com._ensure_object(arg)
        try:
            if format is not None:
                result = None

                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg)
                    except:
                        raise ValueError(
                            "cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    result = tslib.array_strptime(arg, format)
            else:
                result = tslib.array_to_datetime(arg,
                                                 raise_=errors == 'raise',
                                                 utc=utc,
                                                 dayfirst=dayfirst,
                                                 coerce=coerce,
                                                 unit=unit)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #31
0
파일: cast.py 프로젝트: DGrady/pandas
        def _try_datetime(v):
            # safe coerce to datetime64
            try:
                v = tslib.array_to_datetime(v, errors='raise')
            except ValueError:

                # we might have a sequence of the same-datetimes with tz's
                # if so coerce to a DatetimeIndex; if they are not the same,
                # then these stay as object dtype
                try:
                    from pandas import to_datetime
                    return to_datetime(v)
                except:
                    pass

            except:
                pass

            return v.reshape(shape)
예제 #32
0
파일: tools.py 프로젝트: Black-Milk/pandas
    def _convert_f(arg):
        arg = com._ensure_object(arg)

        try:
            if format is not None:
                result = tslib.array_strptime(arg, format)
            else:
                result = tslib.array_to_datetime(
                    arg, raise_=errors == "raise", utc=utc, dayfirst=dayfirst, coerce=coerce, unit=unit
                )
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz="utc" if utc else None)
            return result
        except ValueError, e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #33
0
파일: cast.py 프로젝트: uweschmitt/pandas
        def _try_datetime(v):
            # safe coerce to datetime64
            try:
                v = tslib.array_to_datetime(v, errors='raise')
            except ValueError:

                # we might have a sequence of the same-datetimes with tz's
                # if so coerce to a DatetimeIndex; if they are not the same,
                # then these stay as object dtype
                try:
                    from pandas import to_datetime
                    return to_datetime(v)
                except:
                    pass

            except:
                pass

            return v.reshape(shape)
예제 #34
0
파일: ops.py 프로젝트: quaintm/pandas
    def _convert_to_array(self, values, name=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import _possibly_cast_to_timedelta

        coerce = 'compat' if pd._np_version_under1p7 else True
        if not is_list_like(values):
            values = np.array([values])
        inferred_type = lib.infer_dtype(values)
        if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
            # a datetlike
            if not (isinstance(values, (pa.Array, pd.Series))
                    and com.is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = _possibly_cast_to_timedelta(values, coerce=coerce)
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif isinstance(values[0], pd.DateOffset):
            # handle DateOffsets
            os = pa.array([getattr(v, 'delta', None) for v in values])
            mask = isnull(os)
            if mask.any():
                raise TypeError(
                    "cannot use a non-absolute DateOffset in "
                    "datetime/timedelta operations [{0}]".format(','.join(
                        [com.pprint_thing(v) for v in values[mask]])))
            values = _possibly_cast_to_timedelta(os, coerce=coerce)
        else:
            raise TypeError(
                "incompatible type [{0}] for a datetime/timedelta operation".
                format(pa.array(values).dtype))

        return values
예제 #35
0
파일: ops.py 프로젝트: RomanPekar/pandas
    def _convert_to_array(self, values, name=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import _possibly_cast_to_timedelta

        coerce = 'compat' if pd._np_version_under1p7 else True
        if not is_list_like(values):
            values = np.array([values])
        inferred_type = lib.infer_dtype(values)
        if inferred_type in ('datetime64', 'datetime', 'date', 'time'):
            # a datetlike
            if not (isinstance(values, (pa.Array, pd.Series)) and
                    com.is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = _possibly_cast_to_timedelta(values, coerce=coerce)
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif isinstance(values[0], pd.DateOffset):
            # handle DateOffsets
            os = pa.array([getattr(v, 'delta', None) for v in values])
            mask = isnull(os)
            if mask.any():
                raise TypeError("cannot use a non-absolute DateOffset in "
                                "datetime/timedelta operations [{0}]".format(
                                    ', '.join([com.pprint_thing(v)
                                               for v in values[mask]])))
            values = _possibly_cast_to_timedelta(os, coerce=coerce)
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(pa.array(values).dtype))

        return values
예제 #36
0
def _possibly_cast_to_datetime(value, dtype):
    """ try to cast the array/value to a datetimelike dtype, converting float nan to iNaT """

    if dtype == 'M8[ns]':
        if np.isscalar(value):
            if value == tslib.iNaT or isnull(value):
                value = tslib.iNaT
        else:
            value = np.array(value)

            # have a scalar array-like (e.g. NaT)
            if value.ndim == 0:
                value = tslib.iNaT

            # we have an array of datetime & nulls
            elif np.prod(value.shape):
                try:
                    value = tslib.array_to_datetime(value)
                except:
                    pass

    return value
예제 #37
0
def _possibly_cast_to_datetime(value, dtype):
    """ try to cast the array/value to a datetimelike dtype, converting float nan to iNaT """

    if dtype == 'M8[ns]':
        if np.isscalar(value):
            if value == tslib.iNaT or isnull(value):
                value = tslib.iNaT
        else:
            value = np.array(value)

            # have a scalar array-like (e.g. NaT)
            if value.ndim == 0:
                value = tslib.iNaT

            # we have an array of datetime & nulls
            elif np.prod(value.shape):
                try:
                    value = tslib.array_to_datetime(value)
                except:
                    pass

    return value
예제 #38
0
def make_block(values, items, ref_items):
    dtype = values.dtype
    vtype = dtype.type
    klass = None

    if issubclass(vtype, np.floating):
        klass = FloatBlock
    elif issubclass(vtype, np.complexfloating):
        klass = ComplexBlock
    elif issubclass(vtype, np.datetime64):
        klass = DatetimeBlock
    elif issubclass(vtype, np.integer):
        if vtype != np.int64:
            values = values.astype('i8')
        klass = IntBlock
    elif dtype == np.bool_:
        klass = BoolBlock

    # try to infer a datetimeblock
    if klass is None and np.prod(values.shape):
        flat = values.flatten()
        inferred_type = lib.infer_dtype(flat)
        if inferred_type == 'datetime':

            # we have an object array that has been inferred as datetime, so
            # convert it
            try:
                values = tslib.array_to_datetime(flat).reshape(values.shape)
                klass = DatetimeBlock
            except:  # it already object, so leave it
                pass

    if klass is None:
        klass = ObjectBlock

    return klass(values, items, ref_items, ndim=values.ndim)
예제 #39
0
    def _convert_listlike(arg, box):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError as e:
                    values, tz = tslib.datetime_to_datetime64(arg)
                    return DatetimeIndex._simple_new(values, None, tz=tz)

            return arg

        arg = com._ensure_object(arg)
        try:
            if format is not None:
                result = tslib.array_strptime(arg, format)
            else:
                result = tslib.array_to_datetime(arg,
                                                 raise_=errors == 'raise',
                                                 utc=utc,
                                                 dayfirst=dayfirst,
                                                 coerce=coerce,
                                                 unit=unit)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #40
0
파일: tools.py 프로젝트: agijsberts/pandas
    def _convert_listlike(arg, box, format):

        if isinstance(arg, (list,tuple)):
            arg = np.array(arg, dtype='O')

        # these are shortcutable
        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError:
                    pass

            return arg
        elif format is None and com.is_integer_dtype(arg) and unit=='ns':
            result = arg.astype('datetime64[ns]')
            if box:
                return DatetimeIndex(result, tz='utc' if utc else None)

            return result

        arg = com._ensure_object(arg)
        require_iso8601 = False

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

        if format is not None:
            # There is a special fast-path for iso8601 formatted
            # datetime strings, so in those cases don't use the inferred
            # format because this path makes process slower in this
            # special case
            format_is_iso8601 = (
                ('%Y-%m-%dT%H:%M:%S.%f'.startswith(format) or
                '%Y-%m-%d %H:%M:%S.%f'.startswith(format)) and
				format != '%Y'
            )
            if format_is_iso8601:
                require_iso8601 = not infer_datetime_format
                format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg, coerce=coerce)
                    except:
                        raise ValueError("cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(
                            arg, format, exact=exact, coerce=coerce
                        )
                    except (tslib.OutOfBoundsDatetime):
                        if errors == 'raise':
                            raise
                        result = arg
                    except ValueError:
                        # if format was inferred, try falling back
                        # to array_to_datetime - terminate here
                        # for specified formats
                        if not infer_datetime_format:
                            if errors == 'raise':
                                raise
                            result = arg

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(arg, raise_=errors=='raise',
                                                 utc=utc, dayfirst=dayfirst,
                                                 yearfirst=yearfirst, freq=freq,
                                                 coerce=coerce, unit=unit,
                                                 require_iso8601=require_iso8601)

            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #41
0
    def _convert_listlike(arg, box, format, name=None, tz=tz):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        # these are shortcutable
        if is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz=tz, name=name)
                except ValueError:
                    pass

            return arg

        elif is_datetime64tz_dtype(arg):
            if not isinstance(arg, DatetimeIndex):
                return DatetimeIndex(arg, tz=tz, name=name)
            if utc:
                arg = arg.tz_convert(None).tz_localize('UTC')
            return arg

        elif unit is not None:
            if format is not None:
                raise ValueError("cannot specify both format and unit")
            arg = getattr(arg, 'values', arg)
            result = tslib.array_with_unit_to_datetime(arg, unit,
                                                       errors=errors)
            if box:
                if errors == 'ignore':
                    from pandas import Index
                    return Index(result)

                return DatetimeIndex(result, tz=tz, name=name)
            return result
        elif getattr(arg, 'ndim', 1) > 1:
            raise TypeError('arg must be a string, datetime, list, tuple, '
                            '1-d array, or Series')

        arg = _ensure_object(arg)
        require_iso8601 = False

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

        if format is not None:
            # There is a special fast-path for iso8601 formatted
            # datetime strings, so in those cases don't use the inferred
            # format because this path makes process slower in this
            # special case
            format_is_iso8601 = _format_is_iso(format)
            if format_is_iso8601:
                require_iso8601 = not infer_datetime_format
                format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg, errors=errors)
                    except:
                        raise ValueError("cannot convert the input to "
                                         "'%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg, format, exact=exact,
                                                      errors=errors)
                    except tslib.OutOfBoundsDatetime:
                        if errors == 'raise':
                            raise
                        result = arg
                    except ValueError:
                        # if format was inferred, try falling back
                        # to array_to_datetime - terminate here
                        # for specified formats
                        if not infer_datetime_format:
                            if errors == 'raise':
                                raise
                            result = arg

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(
                    arg,
                    errors=errors,
                    utc=utc,
                    dayfirst=dayfirst,
                    yearfirst=yearfirst,
                    require_iso8601=require_iso8601
                )

            if is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz=tz, name=name)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, name=name, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #42
0
파일: tools.py 프로젝트: teja2609/pandas
    def _convert_listlike(arg, box, format):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError:
                    pass

            return arg

        arg = com._ensure_object(arg)

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

            if format is not None:
                # There is a special fast-path for iso8601 formatted
                # datetime strings, so in those cases don't use the inferred
                # format because this path makes process slower in this
                # special case
                format_is_iso8601 = ('%Y-%m-%dT%H:%M:%S.%f'.startswith(format)
                                     or
                                     '%Y-%m-%d %H:%M:%S.%f'.startswith(format))
                if format_is_iso8601:
                    format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg, coerce=coerce)
                    except:
                        raise ValueError(
                            "cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg,
                                                      format,
                                                      exact=exact,
                                                      coerce=coerce)
                    except (tslib.OutOfBoundsDatetime):
                        if errors == 'raise':
                            raise
                        result = arg
                    except ValueError:
                        # Only raise this error if the user provided the
                        # datetime format, and not when it was inferred
                        if not infer_datetime_format:
                            raise

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(arg,
                                                 raise_=errors == 'raise',
                                                 utc=utc,
                                                 dayfirst=dayfirst,
                                                 coerce=coerce,
                                                 unit=unit)

            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #43
0
파일: tools.py 프로젝트: teja2609/pandas
 def calc(carg):
     # calculate the actual result
     carg = carg.astype(object)
     return tslib.array_to_datetime(lib.try_parse_year_month_day(
         carg / 10000, carg / 100 % 100, carg % 100),
                                    coerce=coerce)
예제 #44
0
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import to_timedelta

        ovalues = values
        supplied_dtype = None
        if not is_list_like(values):
            values = np.array([values])
        # if this is a Series that contains relevant dtype info, then use this
        # instead of the inferred type; this avoids coercing Series([NaT],
        # dtype='datetime64[ns]') to Series([NaT], dtype='timedelta64[ns]')
        elif isinstance(values, pd.Series) and (
                    is_timedelta64_dtype(values) or is_datetime64_dtype(values)):
            supplied_dtype = values.dtype
        inferred_type = supplied_dtype or lib.infer_dtype(values)
        if (inferred_type in ('datetime64', 'datetime', 'date', 'time')
            or com.is_datetimetz(inferred_type)):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if (supplied_dtype is None
                and other is not None
                and (other.dtype in ('timedelta64[ns]', 'datetime64[ns]'))
                and isnull(values).all()):
                values = np.empty(values.shape, dtype='timedelta64[ns]')
                values[:] = iNaT

            # a datelike
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
            # datetime with tz
            elif isinstance(ovalues, datetime.datetime) and hasattr(ovalues,'tz'):
                values = pd.DatetimeIndex(values)
            # datetime array with tz
            elif com.is_datetimetz(values):
                if isinstance(values, pd.Series):
                    values = values._values
            elif not (isinstance(values, (np.ndarray, pd.Series)) and
                      is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = to_timedelta(values, errors='coerce')
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__', '__rmul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif inferred_type == 'floating':
            if isnull(values).all() and name in ('__add__', '__radd__',
                                                 '__sub__', '__rsub__'):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT
            return values
        elif self._is_offset(values):
            return values
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(np.array(values).dtype))

        return values
예제 #45
0
    def _convert_to_array(self, values, name=None, other=None):
        """converts values to ndarray"""
        from pandas.tseries.timedeltas import to_timedelta

        ovalues = values
        supplied_dtype = None
        if not is_list_like(values):
            values = np.array([values])
        # if this is a Series that contains relevant dtype info, then use this
        # instead of the inferred type; this avoids coercing Series([NaT],
        # dtype='datetime64[ns]') to Series([NaT], dtype='timedelta64[ns]')
        elif (isinstance(values, pd.Series) and
              (is_timedelta64_dtype(values) or is_datetime64_dtype(values))):
            supplied_dtype = values.dtype
        inferred_type = supplied_dtype or lib.infer_dtype(values)
        if (inferred_type in ('datetime64', 'datetime', 'date', 'time') or
                com.is_datetimetz(inferred_type)):
            # if we have a other of timedelta, but use pd.NaT here we
            # we are in the wrong path
            if (supplied_dtype is None and other is not None and
                (other.dtype in ('timedelta64[ns]', 'datetime64[ns]')) and
                    isnull(values).all()):
                values = np.empty(values.shape, dtype='timedelta64[ns]')
                values[:] = iNaT

            # a datelike
            elif isinstance(values, pd.DatetimeIndex):
                values = values.to_series()
            # datetime with tz
            elif (isinstance(ovalues, datetime.datetime) and
                  hasattr(ovalues, 'tz')):
                values = pd.DatetimeIndex(values)
            # datetime array with tz
            elif com.is_datetimetz(values):
                if isinstance(values, ABCSeries):
                    values = values._values
            elif not (isinstance(values, (np.ndarray, ABCSeries)) and
                      is_datetime64_dtype(values)):
                values = tslib.array_to_datetime(values)
        elif inferred_type in ('timedelta', 'timedelta64'):
            # have a timedelta, convert to to ns here
            values = to_timedelta(values, errors='coerce')
        elif inferred_type == 'integer':
            # py3 compat where dtype is 'm' but is an integer
            if values.dtype.kind == 'm':
                values = values.astype('timedelta64[ns]')
            elif isinstance(values, pd.PeriodIndex):
                values = values.to_timestamp().to_series()
            elif name not in ('__truediv__', '__div__', '__mul__', '__rmul__'):
                raise TypeError("incompatible type for a datetime/timedelta "
                                "operation [{0}]".format(name))
        elif inferred_type == 'floating':
            if (isnull(values).all() and
                    name in ('__add__', '__radd__', '__sub__', '__rsub__')):
                values = np.empty(values.shape, dtype=other.dtype)
                values[:] = iNaT
            return values
        elif self._is_offset(values):
            return values
        else:
            raise TypeError("incompatible type [{0}] for a datetime/timedelta"
                            " operation".format(np.array(values).dtype))

        return values
예제 #46
0
파일: tools.py 프로젝트: B-Rich/pandas
    def _convert_listlike(arg, box, format):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype="O")

        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz="utc" if utc else None)
                except ValueError:
                    pass

            return arg

        arg = com._ensure_object(arg)

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

            if format is not None:
                # There is a special fast-path for iso8601 formatted
                # datetime strings, so in those cases don't use the inferred
                # format because this path makes process slower in this
                # special case
                format_is_iso8601 = "%Y-%m-%dT%H:%M:%S.%f".startswith(format) or "%Y-%m-%d %H:%M:%S.%f".startswith(
                    format
                )
                if format_is_iso8601:
                    format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == "%Y%m%d":
                    try:
                        result = _attempt_YYYYMMDD(arg)
                    except:
                        raise ValueError("cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg, format, coerce=coerce)
                    except (tslib.OutOfBoundsDatetime):
                        if errors == "raise":
                            raise
                        result = arg
                    except ValueError:
                        # Only raise this error if the user provided the
                        # datetime format, and not when it was inferred
                        if not infer_datetime_format:
                            raise

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(
                    arg, raise_=errors == "raise", utc=utc, dayfirst=dayfirst, coerce=coerce, unit=unit
                )

            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz="utc" if utc else None)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #47
0
    def _convert_listlike(arg, box, format, name=None):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        # these are shortcutable
        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg,
                                         tz='utc' if utc else None,
                                         name=name)
                except ValueError:
                    pass

            return arg

        elif com.is_datetime64tz_dtype(arg):
            if not isinstance(arg, DatetimeIndex):
                return DatetimeIndex(arg, tz='utc' if utc else None)
            if utc:
                arg = arg.tz_convert(None).tz_localize('UTC')
            return arg

        elif unit is not None:
            if format is not None:
                raise ValueError("cannot specify both format and unit")
            arg = getattr(arg, 'values', arg)
            result = tslib.array_with_unit_to_datetime(arg,
                                                       unit,
                                                       errors=errors)
            if box:
                if errors == 'ignore':
                    from pandas import Index
                    return Index(result)

                return DatetimeIndex(result,
                                     tz='utc' if utc else None,
                                     name=name)
            return result
        elif getattr(arg, 'ndim', 1) > 1:
            raise TypeError('arg must be a string, datetime, list, tuple, '
                            '1-d array, or Series')

        arg = com._ensure_object(arg)
        require_iso8601 = False

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

        if format is not None:
            # There is a special fast-path for iso8601 formatted
            # datetime strings, so in those cases don't use the inferred
            # format because this path makes process slower in this
            # special case
            format_is_iso8601 = _format_is_iso(format)
            if format_is_iso8601:
                require_iso8601 = not infer_datetime_format
                format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg, errors=errors)
                    except:
                        raise ValueError("cannot convert the input to "
                                         "'%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg,
                                                      format,
                                                      exact=exact,
                                                      errors=errors)
                    except tslib.OutOfBoundsDatetime:
                        if errors == 'raise':
                            raise
                        result = arg
                    except ValueError:
                        # if format was inferred, try falling back
                        # to array_to_datetime - terminate here
                        # for specified formats
                        if not infer_datetime_format:
                            if errors == 'raise':
                                raise
                            result = arg

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(
                    arg,
                    errors=errors,
                    utc=utc,
                    dayfirst=dayfirst,
                    yearfirst=yearfirst,
                    freq=freq,
                    require_iso8601=require_iso8601)

            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result,
                                       tz='utc' if utc else None,
                                       name=name)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, name=name, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #48
0
파일: tools.py 프로젝트: Libardo1/pandas
def to_datetime(arg, errors='ignore', dayfirst=False, utc=None, box=True,
                format=None, coerce=False, unit='ns'):
    """
    Convert argument to datetime

    Parameters
    ----------
    arg : string, datetime, array of strings (with possible NAs)
    errors : {'ignore', 'raise'}, default 'ignore'
        Errors are ignored by default (values left untouched)
    dayfirst : boolean, default False
        If True parses dates with the day first, eg 20/01/2005
        Warning: dayfirst=True is not strict, but will prefer to parse
        with day first (this is a known bug).
    utc : boolean, default None
        Return UTC DatetimeIndex if True (converting any tz-aware
        datetime.datetime objects as well)
    box : boolean, default True
        If True returns a DatetimeIndex, if False returns ndarray of values
    format : string, default None
        strftime to parse time, eg "%d/%m/%Y"
    coerce : force errors to NaT (False by default)
    unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch
        (e.g. a unix timestamp), which is an integer/float number

    Returns
    -------
    ret : datetime if parsing succeeded
    """
    from pandas import Timestamp
    from pandas.core.series import Series
    from pandas.tseries.index import DatetimeIndex

    def _convert_listlike(arg, box):

        if isinstance(arg, (list,tuple)):
            arg = np.array(arg, dtype='O')

        if com.is_datetime64_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg, tz='utc' if utc else None)
                except ValueError, e:
                    values, tz = tslib.datetime_to_datetime64(arg)
                    return DatetimeIndex._simple_new(values, None, tz=tz)

            return arg

        arg = com._ensure_object(arg)
        try:
            if format is not None:
                result = tslib.array_strptime(arg, format)
            else:
                result = tslib.array_to_datetime(arg, raise_=errors == 'raise',
                                                 utc=utc, dayfirst=dayfirst,
                                                 coerce=coerce, unit=unit)
            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result, tz='utc' if utc else None)
            return result

        except ValueError, e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, None, tz=tz)
            except (ValueError, TypeError):
                raise e
예제 #49
0
파일: tools.py 프로젝트: Pragnya02/pandas
 def calc(carg):
     # calculate the actual result
     carg = carg.astype(object)
     return tslib.array_to_datetime(lib.try_parse_year_month_day(carg/10000,carg/100 % 100, carg % 100), coerce=coerce)
예제 #50
0
    def _convert_listlike(arg, box, format, name=None):

        if isinstance(arg, (list, tuple)):
            arg = np.array(arg, dtype='O')

        # these are shortcutable
        if com.is_datetime64_ns_dtype(arg):
            if box and not isinstance(arg, DatetimeIndex):
                try:
                    return DatetimeIndex(arg,
                                         tz='utc' if utc else None,
                                         name=name)
                except ValueError:
                    pass

            return arg
        elif format is None and com.is_integer_dtype(arg) and unit == 'ns':
            result = arg.astype('datetime64[ns]')
            if box:
                return DatetimeIndex(result,
                                     tz='utc' if utc else None,
                                     name=name)

            return result

        arg = com._ensure_object(arg)
        require_iso8601 = False

        if infer_datetime_format and format is None:
            format = _guess_datetime_format_for_array(arg, dayfirst=dayfirst)

        if format is not None:
            # There is a special fast-path for iso8601 formatted
            # datetime strings, so in those cases don't use the inferred
            # format because this path makes process slower in this
            # special case
            format_is_iso8601 = (('%Y-%m-%dT%H:%M:%S.%f'.startswith(format)
                                  or '%Y-%m-%d %H:%M:%S.%f'.startswith(format))
                                 and format != '%Y')
            if format_is_iso8601:
                require_iso8601 = not infer_datetime_format
                format = None

        try:
            result = None

            if format is not None:
                # shortcut formatting here
                if format == '%Y%m%d':
                    try:
                        result = _attempt_YYYYMMDD(arg, errors=errors)
                    except:
                        raise ValueError(
                            "cannot convert the input to '%Y%m%d' date format")

                # fallback
                if result is None:
                    try:
                        result = tslib.array_strptime(arg,
                                                      format,
                                                      exact=exact,
                                                      errors=errors)
                    except (tslib.OutOfBoundsDatetime):
                        if errors == 'raise':
                            raise
                        result = arg
                    except ValueError:
                        # if format was inferred, try falling back
                        # to array_to_datetime - terminate here
                        # for specified formats
                        if not infer_datetime_format:
                            if errors == 'raise':
                                raise
                            result = arg

            if result is None and (format is None or infer_datetime_format):
                result = tslib.array_to_datetime(
                    arg,
                    errors=errors,
                    utc=utc,
                    dayfirst=dayfirst,
                    yearfirst=yearfirst,
                    freq=freq,
                    unit=unit,
                    require_iso8601=require_iso8601)

            if com.is_datetime64_dtype(result) and box:
                result = DatetimeIndex(result,
                                       tz='utc' if utc else None,
                                       name=name)
            return result

        except ValueError as e:
            try:
                values, tz = tslib.datetime_to_datetime64(arg)
                return DatetimeIndex._simple_new(values, name=name, tz=tz)
            except (ValueError, TypeError):
                raise e