예제 #1
0
def test_refcount():
    # Component (subclasses) created outside of a DataStructureDefintion
    da1 = DataAttribute(id='foo')
    da2 = DataAttribute(id='foo')

    assert id(da1) != id(da2)
    assert da1 is not da2

    # Retrieving attributes from a DataStructureDefintion results in references
    # to the same object
    dsd = DataStructureDefinition()

    da3 = dsd.attribute('foo')
    da4 = dsd.attribute('foo')

    assert id(da3) == id(da4)
    assert da3 is da4
    assert len(dsd.attributes) == 1

    # Creating an AttributeValue referencing a DataAttribute outside a DSD
    av1 = AttributeValue(value='baz', value_for=DataAttribute(id='foo'))
    assert not any([av1.value_for is da for da in (da1, da2, da3)])

    # Same, using a DSD
    av2 = AttributeValue(value='baz', value_for='foo', dsd=dsd)
    assert av2.value_for is da3
예제 #2
0
파일: sdmxml.py 프로젝트: daoluan/pandaSDMX
 def parse_attributes(self, elem):
     result = {}
     for e in elem.iterchildren():
         da = DataAttribute(id=e.attrib['id'])
         av = AttributeValue(value_for=da, value=e.attrib['value'])
         result[da.id] = av
     return result
예제 #3
0
def test_observation():
    obs = Observation()

    # Set by item name
    obs.attached_attribute['TIME_PERIOD'] = 3
    # NB the following does not work; see Observation.attrib()
    # obs.attrib['TIME_PERIOD'] = 3

    obs.attached_attribute['CURRENCY'] = 'USD'

    # Access by attribute name
    assert obs.attrib.TIME_PERIOD == 3
    assert obs.attrib.CURRENCY == 'USD'

    # Access by item index
    assert obs.attrib[1] == 'USD'

    # Add attributes
    obs.attached_attribute['FOO'] = '1'
    obs.attached_attribute['BAR'] = '2'
    assert obs.attrib.FOO == '1' and obs.attrib['BAR'] == '2'

    # Using classes
    da = DataAttribute(id='FOO')
    av = AttributeValue(value_for=da, value='baz')
    obs.attached_attribute[da.id] = av
    assert obs.attrib[da.id] == 'baz'
예제 #4
0
def test_observation():
    obs = Observation()

    # Set by item name
    obs.attached_attribute["TIME_PERIOD"] = 3
    # NB the following does not work; see Observation.attrib()
    # obs.attrib['TIME_PERIOD'] = 3

    obs.attached_attribute["CURRENCY"] = "USD"

    # Access by attribute name
    assert obs.attrib.TIME_PERIOD == 3
    assert obs.attrib.CURRENCY == "USD"

    # Access by item index
    assert obs.attrib[1] == "USD"

    # Add attributes
    obs.attached_attribute["FOO"] = "1"
    obs.attached_attribute["BAR"] = "2"
    assert obs.attrib.FOO == "1" and obs.attrib["BAR"] == "2"

    # Using classes
    da = DataAttribute(id="FOO")
    av = AttributeValue(value_for=da, value="baz")
    obs.attached_attribute[da.id] = av
    assert obs.attrib[da.id] == "baz"
예제 #5
0
    def parse_attributes(self, elem):
        result = {}

        ad = self._get_current(AttributeDescriptor)
        for e in elem.iterchildren():
            da = ad.get(e.attrib['id'])
            av = AttributeValue(value=e.attrib['value'], value_for=da)
            result[da.id] = av
        return result
예제 #6
0
def test_flat():
    # Create a bare Message
    msg = DataMessage()

    # Recreate the content from exr-flat.json
    header = Header(
        id="62b5f19d-f1c9-495d-8446-a3661ed24753",
        prepared="2012-11-29T08:40:26Z",
        sender=model.Agency(id="ECB"),
    )
    msg.header = header

    ds = DataSet()

    # Create a Key and attributes
    key = Key(
        FREQ="D",
        CURRENCY="NZD",
        CURRENCY_DENOM="EUR",
        EXR_TYPE="SP00",
        EXR_SUFFIX="A",
        TIME_PERIOD="2013-01-18",
    )
    obs_status = DataAttribute(id="OBS_STATUS")
    attr = {"OBS_STATUS": AttributeValue(value_for=obs_status, value="A")}

    ds.obs.append(
        Observation(dimension=key, value=1.5931, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=1.5925, attached_attribute=attr))

    key = key.copy(CURRENCY="RUB", TIME_PERIOD="2013-01-18")
    ds.obs.append(
        Observation(dimension=key, value=40.3426, attached_attribute=attr))

    key = key.copy(TIME_PERIOD="2013-01-21")
    ds.obs.append(
        Observation(dimension=key, value=40.3000, attached_attribute=attr))

    msg.data.append(ds)

    # Write to pd.Dataframe
    df1 = pandasdmx.to_pandas(msg)

    with specimen("flat.json") as f:
        ref = pandasdmx.read_sdmx(f)
    df2 = pandasdmx.to_pandas(ref)

    assert_pd_equal(df1, df2)
예제 #7
0
def test_flat():
    # Create a bare Message
    msg = DataMessage()

    # Recreate the content from exr-flat.json
    header = Header(
        id='62b5f19d-f1c9-495d-8446-a3661ed24753',
        prepared='2012-11-29T08:40:26Z',
        sender='ECB',
    )
    msg.header = header

    ds = DataSet()

    # Create a Key and attributes
    key = Key(FREQ='D',
              CURRENCY='NZD',
              CURRENCY_DENOM='EUR',
              EXR_TYPE='SP00',
              EXR_SUFFIX='A',
              TIME_PERIOD='2013-01-18')
    obs_status = DataAttribute(id='OBS_STATUS')
    attr = {'OBS_STATUS': AttributeValue(value_for=obs_status, value='A')}

    ds.obs.append(
        Observation(dimension=key, value=1.5931, attached_attribute=attr))

    key = key.copy(TIME_PERIOD='2013-01-21')
    ds.obs.append(
        Observation(dimension=key, value=1.5925, attached_attribute=attr))

    key = key.copy(CURRENCY='RUB', TIME_PERIOD='2013-01-18')
    ds.obs.append(
        Observation(dimension=key, value=40.3426, attached_attribute=attr))

    key = key.copy(TIME_PERIOD='2013-01-21')
    ds.obs.append(
        Observation(dimension=key, value=40.3000, attached_attribute=attr))

    msg.data.append(ds)

    # Write to pd.Dataframe
    df1 = sdmx.to_pandas(msg)

    with specimen('flat.json') as f:
        ref = sdmx.read_sdmx(f)
    df2 = sdmx.to_pandas(ref)

    assert_pd_equal(df1, df2)
예제 #8
0
def test_add_obs(DataSetType):
    # Create a Key and Attributes
    key = Key(CURRENCY="NZD", CURRENCY_DENOM="EUR", TIME_PERIOD="2018-01-01")
    obs_status = DataAttribute(id="OBS_STATUS")
    attr = {"OBS_STATUS": AttributeValue(value_for=obs_status, value="A")}

    obs = []
    for day, value in enumerate([5, 6, 7]):
        key = key.copy(TIME_PERIOD="2018-01-{:02d}".format(day))
        obs.append(Observation(dimension=key, value=value, attached_attribute=attr))

    ds = DataSetType()
    ds.add_obs(obs)

    # PandasDataSet does not store Observation objects internally, but should
    # emit them when the .obs property is accessed
    assert all(a == b for a, b in zip(ds.obs, obs))
예제 #9
0
    def parse_obs(self, elem):
        values = self._parse(elem)

        dd = self._get_current(DimensionDescriptor)

        # Attached attributes
        aa = values.pop('attributes', {})

        if 'obskey' in values:
            key = values.pop('obskey')
        elif 'obsdimension' in values:
            od = values.pop('obsdimension')
            assert len(self._obs_dim) == 1
            dim = self._obs_dim[0].id
            if len(od) == 2:
                assert od['id'] == dim, (values, dim)
            key = Key(**{dim: od['value']}, described_by=dd)

        if len(values):
            value = values.pop('obsvalue')
        else:
            # StructureSpecificData message—all information stored as XML
            # attributes of the <Observation>.
            attr = copy(elem.attrib)

            # Value of the observation
            value = attr.pop('OBS_VALUE')

            # Dimensions for the key
            if self._obs_dim is AllDimensions:
                dims = list(attr.keys())
            else:
                # Use the 'dimension at observation' specified for the message
                dims = map(lambda d: d.id, self._obs_dim)

            key = Key(**{d: attr.pop(d) for d in dims}, described_by=dd)

            # Remaining attr members are SDMX DataAttributes
            ad = self._get_current(AttributeDescriptor)
            for a_id, a_value in attr.items():
                aa[a_id] = AttributeValue(value=a_value,
                                          value_for=ad.get(a_id))

        assert len(values) == 0, values
        return Observation(dimension=key, value=value, attached_attribute=aa)
예제 #10
0
파일: sdmxml.py 프로젝트: daoluan/pandaSDMX
    def parse_group(self, elem):
        """<generic:Group>, <structure:Group>, or <Group>."""
        values = self._parse(elem)

        # Check which namespace this Group tag is part of
        if elem.tag == qname('gen', 'Group'):
            # generic → GroupKey in a DataMessage
            gk = values.pop('groupkey')
            gk.attrib.update(values.pop('attributes', {}))
            result = gk
        elif elem.tag == qname('str', 'Group'):
            # structure → GroupDimensionDescriptor
            gdd = GroupDimensionDescriptor(id=elem.attrib['id'],
                                           components=wrap(
                                               values.pop('groupdimension')))

            # Early update of the DSD so that later definitions in the DSD can
            # reference gdd
            dsd = self._get_current(DataStructureDefinition)
            dsd.group_dimensions = gdd

            result = gdd
        else:
            # no namespace → GroupKey in a StructureSpecificData message

            # commented: destructive
            # # Discard XML Schema attribute
            # elem.attrib.pop(qname('xsi', 'type'))

            # the 'TITLE' XML attribute is an SDMX Attribute
            attrib = {}
            try:
                da = DataAttribute(id='TITLE')
                av = AttributeValue(value=elem.attrib['TITLE'], value_for=da)
                attrib[da.id] = av
            except KeyError:
                pass

            # Remaining attributes are the KeyValues
            result = GroupKey(**elem.attrib, attrib=attrib)

        assert len(values) == 0
        return result
예제 #11
0
파일: sdmxml.py 프로젝트: daoluan/pandaSDMX
    def parse_obs(self, elem):
        # TODO handle key-values as attribs
        values = self._parse(elem)
        if len(values):
            key = (values['obskey']
                   if 'obskey' in values else values['obsdimension'])
            if 'obsdimension' in values:
                new_key = Key()
                new_key[key.id] = key
                key = new_key
            obs = Observation(dimension=key,
                              value=values['obsvalue'],
                              attached_attribute=values.get('attributes', {}))
        else:
            # StructureSpecificData message
            attr = copy(elem.attrib)

            # Value of the observation
            value = attr.pop('OBS_VALUE')

            # Dimensions for the key
            if self._obs_dim is AllDimensions:
                dims = list(attr.keys())
            else:
                # Use the 'dimension at observation' specified for the message
                dims = map(lambda d: d.id, self._obs_dim)

            # Create the observation, consuming attr for the key
            obs = Observation(dimension=Key(**{d: attr.pop(d)
                                               for d in dims}),
                              value=value)

            # Remaining attr members are SDMX DataAttributes
            for id, value in attr.items():
                da = DataAttribute(id=id)
                av = AttributeValue(value_for=da, value=value)
                obs.attached_attribute[da.id] = av

        return obs
예제 #12
0
    def _make_obs(self, key, data):
        """Create an Observation from tuple *key* and pd.Series *data."""
        # Create the Key
        key = Key(
            {dim: value
             for dim, value in zip(self._data.index.names, key)})
        attrs = {}

        # Handle columns of ._data
        for col, value in data.items():
            try:
                # A tuple column label is ('attr_obs', attr_id)
                group, attr_id = col
            except ValueError:
                # Not a tuple → the 'value' column, handled below
                continue
            if group == 'attr_obs':
                # Create a DataAttribute
                attrs[attr_id] = AttributeValue(
                    value_for=DataAttribute(id=attr_id), value=value)
        return Observation(dimension=key,
                           value=data['value'],
                           attached_attribute=attrs)
예제 #13
0
    def read_message(self, source):
        # Initialize message instance
        msg = DataMessage()

        # Read JSON
        tree = json.load(source)

        # Read the header
        # FIXME KeyError: 'header'
        elem = tree['header']
        msg.header = Header(id=elem['id'],
                            prepared=elem['prepared'],
                            sender=Item(**elem['sender']))

        # pre-fetch some structures for efficient use in series and obs
        structure = tree['structure']

        # Read dimensions and values
        self._dim_level = dict()
        self._dim_values = dict()
        for level_name, level in structure['dimensions'].items():
            for elem in level:
                # Create the Dimension
                d = msg.structure.dimension(id=elem['id'],
                                            order=elem.get('keyPosition', -1))

                # Record the level it appears at
                self._dim_level[d] = level_name

                # Record values
                self._dim_values[d] = list()
                for value in elem.get('values', []):
                    self._dim_values[d].append(
                        KeyValue(id=d.id, value=value['id']))

        # Assign an order to an implicit dimension
        for d in msg.structure.dimensions:
            if d.order == -1:
                d.order = len(msg.structure.dimensions)

        # Determine the dimension at the observation level
        if all([level == 'observation' for level in self._dim_level.values()]):
            dim_at_obs = AllDimensions
        else:
            dim_at_obs = [
                dim for dim, level in self._dim_level.items()
                if level == 'observation'
            ]

        msg.observation_dimension = dim_at_obs

        # Read attributes and values
        self._attr_level = dict()
        self._attr_values = dict()
        for level_name, level in structure['attributes'].items():
            for attr in level:
                # Create a DataAttribute in the DSD
                a = msg.structure.attribute(
                    id=attr['id'],
                    concept_identity=Concept(name=attr['name']),
                )

                # Record the level it appears at
                self._attr_level[a] = level_name

                # Record its values
                self._attr_values[a] = list()
                for value in attr.get('values', []):
                    self._attr_values[a].append(
                        AttributeValue(value=value['name'], value_for=a))

        self.msg = msg

        # Make a SeriesKey for Observations in this DataSet
        ds_key = self._make_key('dataSet')

        # Read DataSets
        for ds in tree['dataSets']:
            msg.data.append(self.read_dataset(ds, ds_key))

        return msg
예제 #14
0
    def read_message(self, source, dsd=None):
        # Initialize message instance
        msg = DataMessage()

        if dsd:  # pragma: no cover
            # Store explicit DSD, if any
            msg.dataflow.structure = dsd

        # Read JSON
        source.default_size = -1
        tree = json.load(source)

        # Read the header
        # TODO handle KeyError here
        elem = tree["header"]
        msg.header = Header(
            id=elem["id"],
            prepared=elem["prepared"],
            sender=model.Agency(**elem["sender"]),
        )

        # pre-fetch some structures for efficient use in series and obs
        structure = tree["structure"]

        # Read dimensions and values
        self._dim_level = dict()
        self._dim_values = dict()
        for level_name, level in structure["dimensions"].items():
            for elem in level:
                # Create the Dimension
                d = msg.structure.dimensions.getdefault(
                    id=elem["id"], order=elem.get("keyPosition", -1)
                )

                # Record the level it appears at
                self._dim_level[d] = level_name

                # Record values
                self._dim_values[d] = list()
                for value in elem.get("values", []):
                    self._dim_values[d].append(KeyValue(id=d.id, value=value["id"]))

        # Assign an order to an implicit dimension
        for d in msg.structure.dimensions:
            if d.order == -1:
                d.order = len(msg.structure.dimensions)

        # Determine the dimension at the observation level
        if all([level == "observation" for level in self._dim_level.values()]):
            dim_at_obs = AllDimensions
        else:
            dim_at_obs = [
                dim for dim, level in self._dim_level.items() if level == "observation"
            ]

        msg.observation_dimension = dim_at_obs

        # Read attributes and values
        self._attr_level = dict()
        self._attr_values = dict()
        for level_name, level in structure["attributes"].items():
            for attr in level:
                # Create a DataAttribute in the DSD
                a = msg.structure.attributes.getdefault(
                    id=attr["id"], concept_identity=Concept(name=attr["name"])
                )

                # Record the level it appears at
                self._attr_level[a] = level_name

                # Record its values
                self._attr_values[a] = list()
                for value in attr.get("values", []):
                    self._attr_values[a].append(
                        AttributeValue(value=value["name"], value_for=a)
                    )

        self.msg = msg

        # Make a SeriesKey for Observations in this DataSet
        ds_key = self._make_key("dataSet")

        # Read DataSets
        for ds in tree["dataSets"]:
            msg.data.append(self.read_dataset(ds, ds_key))

        return msg