def initialise(): """ initialise the db :return: sql_imports """ births = load_births() return births
from sklearn.datasets import load_iris import pandas as pd from pandasql import sqldf from pandasql import load_meat, load_births import re births = load_births() meat = load_meat() iris = load_iris() iris_df = pd.DataFrame(iris.data, columns=iris.feature_names) iris_df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names) iris_df.columns = [re.sub("[() ]", "", col) for col in iris_df.columns] dataset = pd.read_csv('c:/temp/data-small.txt', sep='\t') print(sqldf("SELECT * FROM iris_df LIMIT 10;", locals())) print(sqldf("SELECT sepalwidthcm, species FROM iris_df LIMIT 10;", locals())) print(sqldf("SELECT * FROM dataset LIMIT 10;", locals()))
__FILENAME__ = demo from sklearn.datasets import load_iris import pandas as pd from pandasql import sqldf from pandasql import load_meat, load_births import re births = load_births() meat = load_meat() iris = load_iris() iris_df = pd.DataFrame(iris.data, columns=iris.feature_names) iris_df["species"] = pd.Categorical(iris.target, levels=iris.target_names) iris_df.columns = [re.sub("[() ]", "", col) for col in iris_df.columns] print sqldf("select * from iris_df limit 10;", locals()) print sqldf("select sepalwidthcm, species from iris_df limit 10;", locals()) q = """ select species , avg(sepalwidthcm) , min(sepalwidthcm) , max(sepalwidthcm) from iris_df group by species; """ print "*" * 80