def fit_pt2_incoh(): #fit to incoherent MC pT^2 ptbin = 0.008 ptmin = 0. ptmax = 1. mmin = 2.8 mmax = 3.2 strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) can = ut.box_canvas() hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax) ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})", "#it{p}_{T}^{2} (GeV^{2})") tree_incoh.Draw("jRecPt*jRecPt >> hPtIncoh", strsel) #hPtIncoh.Sumw2() #hPtIncoh.Scale(1./hPtIncoh.Integral("width")) ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01) func_incoh_pt2 = TF1("func_incoh", "[0]*exp(-[1]*x)", 0., 10.) func_incoh_pt2.SetParName(0, "A") func_incoh_pt2.SetParName(1, "b") func_incoh_pt2.SetNpx(1000) func_incoh_pt2.SetLineColor(rt.kRed) func_incoh_pt2.SetParameters(3000., 5.) r1 = (hPtIncoh.Fit(func_incoh_pt2, "RS")).Get() hPtIncoh.Draw() func_incoh_pt2.Draw("same") leg = ut.prepare_leg(0.67, 0.84, 0.14, 0.12, 0.03) ut.add_leg_mass(leg, mmin, mmax) leg.AddEntry(hPtIncoh, "Incoherent MC") leg.AddEntry(func_incoh_pt2, "#it{A}*exp(-#it{b}*#it{p}_{T}^{2})", "l") leg.Draw("same") desc = pdesc(hPtIncoh, 0.72, 0.84, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed) desc.itemRes("#it{A}", r1, 0, rt.kRed) desc.itemRes("#it{b}", r1, 1, rt.kRed) desc.draw() #gPad.SetLogy() ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def pdf_logPt2_prelim(): #PDF fit to log_10(pT^2) for preliminary figure #tree_in = tree_incoh tree_in = tree #ptbin = 0.04 ptbin = 0.12 ptmin = -5. ptmax = 1. mmin = 2.8 mmax = 3.2 #fitran = [-5., 1.] fitran = [-0.9, 0.1] binned = False #gamma-gamma 131 evt for pT<0.18 #input data pT = RooRealVar("jRecPt", "pT", 0, 10) m = RooRealVar("jRecM", "mass", 0, 10) dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m)) strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) data = dataIN.reduce(strsel) #x is RooRealVar for log(Pt2) draw = "TMath::Log10(jRecPt*jRecPt)" draw_func = RooFormulaVar( "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw, RooArgList(pT)) x = data.addColumn(draw_func) x.setRange("fitran", fitran[0], fitran[1]) #binned data nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax) hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax) hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax) hPtCoh.SetLineWidth(2) #fill in binned data tree_in.Draw(draw + " >> hPt", strsel) tree_coh.Draw(draw + " >> hPtCoh", strsel) dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt) #range for plot x.setMin(ptmin) x.setMax(ptmax) x.setRange("plotran", ptmin, ptmax) #create the pdf b = RooRealVar("b", "b", 5., 0., 10.) pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))" pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b)) #make the fit if binned == True: r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save()) else: r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save()) #calculate norm to number of events xset = RooArgSet(x) ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset), rf.Range("fitran")) print "PDF integral:", ipdf.getVal() if binned == True: nevt = tree_incoh.Draw( "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) + " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1])) else: nevt = data.sumEntries("x", "fitran") print "nevt:", nevt pdf_logPt2.setNormRange("fitran") print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x)) #a = nevt/ipdf.getVal() a = nevt / pdf_logPt2.getNorm(RooArgSet(x)) print "a =", a #gamma-gamma contribution hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax) tree_gg.Draw(draw + " >> hPtGG", strsel) #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9) ut.norm_to_num(hPtGG, 131., rt.kGreen + 1) print "Int GG:", hPtGG.Integral() #sum of all contributions hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax) hSum.SetLineWidth(3) #add ggel to the sum hSum.Add(hPtGG) #add incoherent contribution func_logPt2 = TF1("pdf_logPt2", "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10., 10.) func_logPt2.SetParameters(a, b.getVal()) hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax) ut.fill_h1_tf(hInc, func_logPt2) hSum.Add(hInc) #add coherent contribution ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2) # norm for coh hSum.Add(hPtCoh) #set to draw as a lines ut.line_h1(hSum, rt.kBlack) #create canvas frame can = ut.box_canvas() ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01) frame = x.frame(rf.Bins(nbins), rf.Title("")) frame.SetTitle("") frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) + " (GeV/c)^{2})") frame.GetXaxis().SetTitleOffset(1.2) frame.GetYaxis().SetTitleOffset(1.6) print "Int data:", hPt.Integral() #plot the data if binned == True: dataH.plotOn(frame, rf.Name("data")) else: data.plotOn(frame, rf.Name("data")) pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed), rf.Name("pdf_logPt2")) pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed), rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed)) frame.Draw() leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03) #ut.add_leg_mass(leg, mmin, mmax) hx = ut.prepare_TH1D("hx", 1, 0, 1) hx.Draw("same") ln = ut.col_lin(rt.kRed, 2) leg.AddEntry(hx, "Data", "p") leg.AddEntry(hSum, "Sum", "l") leg.AddEntry(hPtCoh, "Coherent J/#psi", "l") leg.AddEntry(ln, "Incoherent parametrization", "l") leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l") #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l") leg.Draw("same") l0 = ut.cut_line(fitran[0], 0.9, frame) l1 = ut.cut_line(fitran[1], 0.9, frame) #l0.Draw() #l1.Draw() pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03) pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "") ut.add_leg_mass(pleg, mmin, mmax) pleg.AddEntry(None, "STAR Preliminary", "") pleg.AddEntry(None, "AuAu@200 GeV", "") pleg.AddEntry(None, "UPC sample", "") pleg.Draw("same") desc = pdesc(frame, 0.14, 0.9, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1, rt.kRed) desc.itemD("#it{A}", a, -1, rt.kRed) desc.itemR("#it{b}", b, rt.kRed) #desc.draw() #put the sum hSum.Draw("same") frame.Draw("same") #put gamma-gamma and coherent J/psi hPtGG.Draw("same") hPtCoh.Draw("same") #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def fit_logPt2_incoh(): #fit to incoherent log_10(pT^2) ptbin = 0.12 ptmin = -5. ptmax = 1. mmin = 2.8 mmax = 3.2 fitran = [-1., -0.1] strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) can = ut.box_canvas() hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin / 3., ptmin, ptmax) ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})") ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01) draw = "TMath::Log10(jRecPt*jRecPt)" tree_incoh.Draw(draw + " >> hPtIncoh", strsel) #hPtIncoh.Sumw2() #hPtIncoh.Scale(1./hPtIncoh.Integral("width")) func_incoh_logPt2 = TF1("func_incoh_logPt2", "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10., 10.) func_incoh_logPt2.SetParName(0, "A") func_incoh_logPt2.SetParName(1, "b") func_incoh_logPt2.SetNpx(1000) func_incoh_logPt2.SetLineColor(rt.kRed) func_incoh_logPt2.SetParameters(3000., 5.) r1 = (hPtIncoh.Fit(func_incoh_logPt2, "RS", "", fitran[0], fitran[1])).Get() #create pdf normalized to number of events pdf_logPt2 = TF1("pdf_logPt2", "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10., 10.) nevt = tree_incoh.Draw( "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) + " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1])) k_norm = nevt / func_incoh_logPt2.Integral(fitran[0], fitran[1]) pdf_logPt2.SetParameter(0, k_norm * func_incoh_logPt2.GetParameter(0)) pdf_logPt2.SetParameter(1, func_incoh_logPt2.GetParameter(1)) #verify the normalization: print "PDF integral", pdf_logPt2.Integral(-10., 10.) hPtIncoh.Draw() func_incoh_logPt2.Draw("same") leg = ut.prepare_leg(0.18, 0.78, 0.14, 0.15, 0.03) ut.add_leg_mass(leg, mmin, mmax) leg.AddEntry(hPtIncoh, "Incoherent MC") leg.AddEntry( func_incoh_logPt2, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l") leg.Draw("same") desc = pdesc(hPtIncoh, 0.18, 0.78, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed) desc.itemRes("#it{A}", r1, 0, rt.kRed) desc.itemD("#it{A}", pdf_logPt2.GetParameter(0), -1, rt.kRed) desc.itemRes("#it{b}", r1, 1, rt.kRed) desc.draw() uoleg = ut.make_uo_leg(hPtIncoh, 0.14, 0.9, 0.01, 0.1) uoleg.Draw("same") l0 = ut.cut_line(fitran[0], 0.9, hPtIncoh) l1 = ut.cut_line(fitran[1], 0.9, hPtIncoh) l0.Draw() l1.Draw() ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def pdf_logPt2_incoh(): #PDF fit to log_10(pT^2) #tree_in = tree_incoh tree_in = tree #ptbin = 0.04 ptbin = 0.12 ptmin = -5. ptmax = 1. mmin = 2.8 mmax = 3.2 #fitran = [-5., 1.] fitran = [-0.9, 0.1] binned = False #gamma-gamma 131 evt for pT<0.18 #output log file out = open("out.txt", "w") ut.log_results( out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg) loglist = [(x, eval(x)) for x in ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]] strlog = ut.make_log_string(loglist) ut.log_results(out, strlog + "\n") #input data pT = RooRealVar("jRecPt", "pT", 0, 10) m = RooRealVar("jRecM", "mass", 0, 10) dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m)) strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) data = dataIN.reduce(strsel) #x is RooRealVar for log(Pt2) draw = "TMath::Log10(jRecPt*jRecPt)" draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})", draw, RooArgList(pT)) x = data.addColumn(draw_func) x.setRange("fitran", fitran[0], fitran[1]) #binned data nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax) hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax) tree_in.Draw(draw + " >> hPt", strsel) dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt) #range for plot x.setMin(ptmin) x.setMax(ptmax) x.setRange("plotran", ptmin, ptmax) #create the pdf b = RooRealVar("b", "b", 5., 0., 10.) pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))" pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b)) #make the fit if binned == True: r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save()) else: r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save()) ut.log_results(out, ut.log_fit_result(r1)) #calculate norm to number of events xset = RooArgSet(x) ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset), rf.Range("fitran")) print "PDF integral:", ipdf.getVal() if binned == True: nevt = tree_incoh.Draw( "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) + " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1])) else: nevt = data.sumEntries("x", "fitran") print "nevt:", nevt pdf_logPt2.setNormRange("fitran") print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x)) #a = nevt/ipdf.getVal() a = nevt / pdf_logPt2.getNorm(RooArgSet(x)) ut.log_results(out, "log_10(pT^2) parametrization:") ut.log_results(out, "A = {0:.2f}".format(a)) ut.log_results(out, ut.log_fit_parameters(r1, 0, 2)) print "a =", a #Coherent contribution hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax) hPtCoh.Sumw2() #tree_coh.Draw(draw + " >> hPtCoh", strsel) tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel) ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2) # norm for coh #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1) #ut.norm_to_num(hPtCoh, 405, rt.kBlue) print "Coherent integral:", hPtCoh.Integral() #TMath::Log10(jRecPt*jRecPt) #Sartre generated coherent shape sartre = TFile.Open( "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root" ) sartre_tree = sartre.Get("sartre_tree") hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax) sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre", "rapidity>-1 && rapidity<1") ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2) # norm for Sartre #gamma-gamma contribution hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax) tree_gg.Draw(draw + " >> hPtGG", strsel) #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9) ut.norm_to_num(hPtGG, 131., rt.kGreen) print "Int GG:", hPtGG.Integral() #psi' contribution psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root") psiP_tree = psiP.Get("jRecTree") hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax) psiP_tree.Draw(draw + " >> hPtPsiP", strsel) ut.norm_to_num(hPtPsiP, 12, rt.kViolet) #sum of all contributions hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax) hSum.SetLineWidth(3) #add ggel to the sum hSum.Add(hPtGG) #add incoherent contribution func_logPt2 = TF1("pdf_logPt2", "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10., 10.) func_logPt2.SetParameters(a, b.getVal()) hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax) ut.fill_h1_tf(hInc, func_logPt2) hSum.Add(hInc) #add coherent contribution hSum.Add(hPtCoh) #add psi(2S) contribution #hSum.Add(hPtPsiP) #set to draw as a lines ut.line_h1(hSum, rt.kBlack) #create canvas frame can = ut.box_canvas() ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01) frame = x.frame(rf.Bins(nbins), rf.Title("")) frame.SetTitle("") frame.SetMaximum(75) frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})") print "Int data:", hPt.Integral() #plot the data if binned == True: dataH.plotOn(frame, rf.Name("data")) else: data.plotOn(frame, rf.Name("data")) pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed), rf.Name("pdf_logPt2")) pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed), rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed)) frame.Draw() amin = TMath.Power(10, ptmin) amax = TMath.Power(10, ptmax) - 1 print amin, amax pt2func = TF1("f1", "TMath::Power(10, x)", amin, amax) #TMath::Power(x, 10) aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-") ut.set_axis(aPt2) aPt2.SetTitle("pt2") #aPt2.Draw(); leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03) ut.add_leg_mass(leg, mmin, mmax) hx = ut.prepare_TH1D("hx", 1, 0, 1) hx.Draw("same") ln = ut.col_lin(rt.kRed) leg.AddEntry(hx, "Data") leg.AddEntry(hPtCoh, "Sartre MC", "l") leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l") #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l") #leg.AddEntry(ln, "Incoherent fit", "l") leg.Draw("same") l0 = ut.cut_line(fitran[0], 0.9, frame) l1 = ut.cut_line(fitran[1], 0.9, frame) #l0.Draw() #l1.Draw() desc = pdesc(frame, 0.14, 0.8, 0.054) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1, rt.kRed) desc.itemD("#it{A}", a, -1, rt.kRed) desc.itemR("#it{b}", b, rt.kRed) desc.draw() #put the sum #hSum.Draw("same") #gPad.SetLogy() frame.Draw("same") #put gamma-gamma hPtGG.Draw("same") #put coherent J/psi hPtCoh.Draw("same") #put Sartre generated coherent shape #hSartre.Draw("same") #put psi(2S) contribution #hPtPsiP.Draw("same") leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03) leg2.AddEntry( ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l") #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l") #leg2.AddEntry(hSartre, "Sartre MC generated", "l") leg2.Draw("same") ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
frame.GetYaxis().SetTitleOffset(1.6) if binned == True: dataH.plotOn(frame, rf.Name("data")) else: data.plotOn(frame, rf.Name("data")) cb.plotOn(frame, rf.Precision(1e-6), rf.Name("CrystalBall"), rf.LineColor(ccb)) frame.Draw() frame.SetXTitle("#it{m}_{e^{+}e^{-}} (GeV)") frame.SetYTitle("Dielectron counts / ({0:.0f} MeV)".format(1000. * mbin)) #fit parameters on the plot desc = pdesc(frame, 0.18, 0.8, 0.057) #x, y, sep desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("CrystalBall", "data", 4), -1, ccb) desc.prec = 4 desc.itemR("#it{m}_{0}", m0, ccb) desc.itemR("#sigma", sig, ccb) desc.prec = 3 desc.itemR("#alpha", alpha, ccb) desc.itemR("#it{n}", n, ccb) desc.draw() leg = ut.prepare_leg(0.16, 0.85, 0.35, 0.08, 0.029) # x, y, dx, dy, tsiz leg.SetMargin(0.14)
def calib_graph(): #calibration graph from number of detected photons to generated energy #get the tree gROOT.ProcessLine("struct EntryD {Double_t val;};") gROOT.ProcessLine("struct EntryL {ULong64_t val;};") gen_energy = rt.EntryD() nphot = rt.EntryL() tree.SetBranchStatus("*", 0) tree.SetBranchStatus("phot_gen", 1) tree.SetBranchAddress("phot_gen", AddressOf(gen_energy, "val")) tree.SetBranchStatus("phot_nphotDet", 1) tree.SetBranchAddress("phot_nphotDet", AddressOf(nphot, "val")) nev = tree.GetEntries() #fill the graph of generated energy as a function of number of detected photons gGenNphot = TGraph(nev) for i in xrange(nev): tree.GetEntry(i) gGenNphot.SetPoint(i, float(nphot.val)/1e3, gen_energy.val) # /1e3 #verify values in the graph gx = rt.Double() gy = rt.Double() for i in xrange(gGenNphot.GetN()): gGenNphot.GetPoint(i, gx, gy) #print i, gx, gy #calibration function calib = TF1("calib", "[0]+[1]*x + [2]*x*x", 0, 100) # 1, 82 0 100 calib.SetParameter(0, 0) calib.SetParameter(1, 0.2) calib.SetParameter(2, -1e-5) #calib.FixParameter(2, 0) #make the fit res = ( gGenNphot.Fit(calib, "RS") ).Get() #log the results to a file out = open("out.txt", "w") out.write(ut.log_tfit_result(res)) can = ut.box_canvas() frame = gPad.DrawFrame(0, 0, 100, 21) ut.set_margin_lbtr(gPad, 0.1, 0.1, 0.01, 0.03) frame.SetXTitle("Number of photoelectrons #it{N}_{phot} #times 1000") frame.SetYTitle("Generated energy #it{E}_{gen} (GeV)") frame.SetTitleOffset(1.4, "Y") frame.SetTitleOffset(1.4, "X") gGenNphot.SetMarkerStyle(7) #gGenNphot.SetMarkerSize(1) gGenNphot.Draw("psame") calib.Draw("same") leg = ut.prepare_leg(0.15, 0.8, 0.3, 0.1, 0.04) leg.SetMargin(0.17) leg.AddEntry(calib, "#it{c}_{0} + #it{c}_{1}#kern[0.05]{#it{N}_{phot}} + #it{c}_{2}#it{N}_{phot}^{2}", "l") leg.Draw("same") #fit parameters on the plot desc = pdesc(frame, 0.64, 0.35, 0.057) #desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", res.Chi2()/res.Ndf(), -1, rt.kRed) desc.itemRes("#it{c}_{0}", res, 0, rt.kRed) desc.itemRes("#it{c}_{1}", res, 1, rt.kRed) desc.prec = 5 desc.itemRes("#it{c}_{2}", res, 2, rt.kRed) desc.draw() #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def resolution(): #relative energy resolution #ALICE PHOS has 3% in 0.2 - 10 GeV, PHOS TDR page 113 (127) emin = -0.4 emax = 0.4 ebin = 0.01 #reconstruct the energy from detected optical photons gRec = rec(False) #construct the relative energy resolution nbins, emax = ut.get_nbins(ebin, emin, emax) hRes = ut.prepare_TH1D_n("hRes", nbins, emin, emax) egen = rt.Double() erec = rt.Double() for i in xrange(gRec.GetN()): gRec.GetPoint(i, egen, erec) hRes.Fill( (erec-egen)/egen ) #fit the resolution with Breit-Wigner pdf x = RooRealVar("x", "x", -0.5, 0.5) x.setRange("fitran", -0.21, 0.21) rfRes = RooDataHist("rfRes", "rfRes", RooArgList(x), hRes) #Breit-Wigner pdf mean = RooRealVar("mean", "mean", 0., -0.1, 0.1) sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9) bwpdf = RooBreitWigner("bwpdf", "bwpdf", x, mean, sigma) rfres = bwpdf.fitTo(rfRes, rf.Range("fitran"), rf.Save()) #log the results to a file out = open("out.txt", "w") out.write(ut.log_fit_result(rfres)) #plot the resolution can = ut.box_canvas() frame = x.frame(rf.Bins(nbins), rf.Title("")) frame.SetTitle("") frame.SetXTitle("Relative energy resolution (#it{E}_{rec}-#it{E}_{gen})/#it{E}_{gen}") frame.GetXaxis().SetTitleOffset(1.4) frame.GetYaxis().SetTitleOffset(1.6) ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.03) rfRes.plotOn(frame, rf.Name("data")) bwpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("bwpdf")) frame.Draw() leg = ut.prepare_leg(0.65, 0.78, 0.28, 0.15, 0.035) leg.SetMargin(0.17) hx = ut.prepare_TH1D("hx", 1, 0, 1) hx.Draw("same") leg.AddEntry(hx, "#frac{#it{E}_{rec} - #it{E}_{gen}}{#it{E}_{gen}}") lx = ut.col_lin(rt.kBlue) leg.AddEntry(lx, "Breit-Wigner fit", "l") leg.Draw("same") #fit parameters on the plot desc = pdesc(frame, 0.67, 0.7, 0.05); #x, y, sep #desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("bwpdf", "data", 2), -1, rt.kBlue) desc.prec = 4 desc.itemR("mean", mean, rt.kBlue) desc.itemR("#sigma", sigma, rt.kBlue) desc.draw() #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
hEff.GetXaxis().SetTitleOffset(1.5) hEff.GetXaxis().SetTitle("Track momentum #it{p}_{tot} at BEMC (GeV)") hEff.GetYaxis().SetTitle("BEMC efficiency") hEff.SetTitle("") hEff.GetXaxis().SetMoreLogLabels() leg = ut.prepare_leg(0.15, 0.82, 0.34, 0.12, 0.03) leg.SetMargin(0.17) #fitform = "#epsilon_{0} + #it{n}#left[1 + erf#left(#frac{#it{p}_{tot} - #it{p}_{tot}^{thr}}{#sqrt{2}#sigma}#right)#right]" fitform = "#it{n}#left[1 + erf#left(#frac{#it{p}_{tot} - #it{p}_{tot}^{thr}}{#sqrt{2}#sigma}#right)#right]" leg.AddEntry(fitFunc, fitform, "l") #fit parameters on the plot desc = pdesc(hEff, 0.035, 0.7, 0.05, 0.002) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2()/r1.Ndf(), -1, clin) desc.itemRes("#it{n}", r1, 0, clin) desc.itemRes("#it{p}_{tot}^{thr}", r1, 1, clin) desc.itemRes("#sigma", r1, 2, clin) #desc.itemRes("#epsilon_{0}", r1, 3, clin) #print "#####", fitFunc.Eval(0.7) hEff.Draw("AP") #hEff.Draw() fitFunc.Draw("same") desc.draw() leg.Draw("same")
#legend for data and kinematics interval leg2 = ut.prepare_leg(0.73, 0.78, 0.22, 0.17, 0.03) leg2.SetMargin(0.17) ut.add_leg_y_pt(leg2, ymin, ymax, ptmax) hx = ut.prepare_TH1D("hx", 1, 0, 1) hx.Draw("same") hxLS = ut.prepare_TH1D("hxLS", 1, 0, 1) hxLS.SetMarkerColor(rt.kRed) hxLS.SetMarkerStyle(21) leg2.AddEntry(hx, "unlike sign") leg2.AddEntry(hxLS, "like sign", "p") leg2.Draw("same") #show fit parameters desc = pdesc(frame, 0.15, 0.78, 0.045) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("Model", "data", 7), -1, cmodel) desc.prec = 0 desc.itemR("#it{N}_{CB}", ncb, ccb) #desc.itemR("#it{N}_{bkg}", nbkg, cbkg) desc.itemR("#it{N}_{#gamma#gamma}", nbkg, cbkg) desc.prec = 3 desc.itemR("#it{m}_{0}", m0, ccb) desc.itemR("#sigma", sig, ccb) if alphafix > 0.: desc.itemD("#alpha", alpha.getVal(), -1, ccb) else: desc.itemR("#alpha", alpha, ccb) if nfix > 0.: desc.itemD("#it{n}", n.getVal(), -1, ccb)
def plot_rec_gen_pt_relative(): # relative dielectron pT resolution as ( pT_rec - pT_gen )/pT_gen ptbin = 0.01 ptmin = -1.2 ptmax = 4 #generated pT selection to input data ptlo = 0.2 pthi = 1. fitran = [-0.1, 3] mmin = 2.8 mmax = 3.2 #output log file out = open("out.txt", "w") #log fit parameters loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]] loglist2 = [(x, eval(x)) for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]] strlog = ut.make_log_string(loglist1, loglist2) ut.log_results(out, strlog + "\n") strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) strsel += " && jGenPt>{0:.3f}".format(ptlo) strsel += " && jGenPt<{0:.3f}".format(pthi) nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax) hPtRel = ut.prepare_TH1D("hPtRel", ptbin, ptmin, ptmax) ytit = "Events / ({0:.3f})".format(ptbin) xtit = "(#it{p}_{T, rec} - #it{p}_{T, gen})/#it{p}_{T, gen}" mctree.Draw("(jRecPt-jGenPt)/jGenPt >> hPtRel", strsel) x = RooRealVar("x", "x", ptmin, ptmax) x.setRange("fitran", fitran[0], fitran[1]) rfPtRel = RooDataHist("rfPtRel", "rfPtRel", RooArgList(x), hPtRel) #reversed Crystal Ball mean = RooRealVar("mean", "mean", 0., -0.1, 0.1) sigma = RooRealVar("sigma", "sigma", 0.2, 0., 0.9) alpha = RooRealVar("alpha", "alpha", -1.2, -10., 0.) n = RooRealVar("n", "n", 1.3, 0., 20.) cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n) res = cbpdf.fitTo(rfPtRel, rf.Range("fitran"), rf.Save()) #log fit results ut.log_results(out, ut.log_fit_result(res)) can = ut.box_canvas() ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03) frame = x.frame(rf.Bins(nbins), rf.Title("")) ut.put_frame_yx_tit(frame, ytit, xtit) rfPtRel.plotOn(frame, rf.Name("data")) cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf")) frame.Draw() desc = pdesc(frame, 0.65, 0.8, 0.057) #x, y, sep desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1, rt.kBlue) desc.prec = 5 desc.itemR("mean", mean, rt.kBlue) desc.prec = 4 desc.itemR("#sigma", sigma, rt.kBlue) desc.itemR("#alpha", alpha, rt.kBlue) desc.prec = 3 desc.itemR("#it{n}", n, rt.kBlue) desc.draw() leg = ut.prepare_leg(0.6, 0.82, 0.21, 0.12, 0.03) # x, y, dx, dy, tsiz leg.SetMargin(0.05) leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi), "") leg.Draw("same") #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def plot_rec_gen_track_pt(): #track pT resolution as ( pT_track_rec - pT_track_gen )/pT_track_gen ptbin = 0.001 ptmin = -0.3 ptmax = 0.1 #generated dielectron pT selection to input data ptlo = 0.2 pthi = 1 fitran = [-0.15, 0.018] mmin = 2.8 mmax = 3.2 ccb = rt.kBlue #output log file out = open("out.txt", "w") #log fit parameters loglist1 = [(x, eval(x)) for x in ["infile_mc", "ptbin", "ptmin", "ptmax"]] loglist2 = [(x, eval(x)) for x in ["ptlo", "pthi", "fitran", "mmin", "mmax"]] strlog = ut.make_log_string(loglist1, loglist2) ut.log_results(out, strlog + "\n") strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) strsel += " && jGenPt>{0:.3f}".format(ptlo) strsel += " && jGenPt<{0:.3f}".format(pthi) #strsel = "" nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax) hPtTrackRel = ut.prepare_TH1D_n("hPtTrackRel", nbins, ptmin, ptmax) ytit = "Events / ({0:.3f})".format(ptbin) xtit = "(#it{p}_{T, rec}^{track} - #it{p}_{T, gen}^{track})/#it{p}_{T, gen}^{track}" mctree.Draw("(jT0pT-jGenP0pT)/jGenP0pT >> hPtTrackRel", strsel) # positive charge mctree.Draw("(jT1pT-jGenP1pT)/jGenP1pT >>+hPtTrackRel", strsel) # add negative charge x = RooRealVar("x", "x", ptmin, ptmax) x.setRange("fitran", fitran[0], fitran[1]) rfPtTrackRel = RooDataHist("rfPtTrackRel", "rfPtTrackRel", RooArgList(x), hPtTrackRel) #standard Crystal Ball mean = RooRealVar("mean", "mean", -0.003, -0.1, 0.1) sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9) alpha = RooRealVar("alpha", "alpha", 1.2, 0., 10.) n = RooRealVar("n", "n", 1.3, 0., 20.) cbpdf = RooCBShape("cbpdf", "cbpdf", x, mean, sigma, alpha, n) res = cbpdf.fitTo(rfPtTrackRel, rf.Range("fitran"), rf.Save()) #log fit results ut.log_results(out, ut.log_fit_result(res)) #generate new distribution according to the fit gROOT.LoadMacro("cb_gen.h") #Crystal Ball generator, min, max, mean, sigma, alpha, n #cbgen = rt.cb_gen(-0.18, 0.05, -0.00226, 0.00908, 1.40165, 1.114) # -0.18, 0.05 ptmin, ptmax cbgen = rt.cb_gen(-0.5, 0.05, -0.00226, 0.00908, 0.2, 2.) # -0.18, 0.05 ptmin, ptmax hRelGen = ut.prepare_TH1D_n("hRelGen", nbins, ptmin, ptmax) ut.set_H1D_col(hRelGen, rt.kBlue) #rt.cb_generate_n(cbgen, hRelGen, int(hPtTrackRel.GetEntries())) rfRelGen = RooDataHist("rfRelGen", "rfRelGen", RooArgList(x), hRelGen) #generate distribution with additional smearing applied hRelSmear = ut.prepare_TH1D_n("hRelSmear", nbins, ptmin, ptmax) ut.set_H1D_col(hRelSmear, rt.kOrange) #tcopy = mctree.CopyTree(strsel) #rt.cb_apply_smear(cbgen, mctree, hRelSmear) can = ut.box_canvas() ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03) frame = x.frame(rf.Bins(nbins), rf.Title("")) ut.put_frame_yx_tit(frame, ytit, xtit) rfPtTrackRel.plotOn(frame, rf.Name("data")) #rfRelGen.plotOn(frame, rf.Name("data")) cbpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("cbpdf"), rf.LineColor(ccb)) frame.Draw() #hRelGen.Draw("e1same") #hRelSmear.Draw("e1same") desc = pdesc(frame, 0.2, 0.8, 0.057) #x, y, sep desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("cbpdf", "data", 4), -1, ccb) desc.prec = 5 desc.itemR("mean", mean, ccb) desc.itemR("#sigma", sigma, ccb) desc.itemR("#alpha", alpha, ccb) desc.prec = 3 desc.itemR("#it{n}", n, ccb) desc.draw() leg = ut.prepare_leg(0.2, 0.82, 0.21, 0.12, 0.03) # x, y, dx, dy, tsiz leg.SetMargin(0.05) leg.AddEntry(0, "#bf{%.1f < #it{p}_{T}^{pair} < %.1f GeV}" % (ptlo, pthi), "") leg.Draw("same") #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def plot_rec_gen_track_phi(): #track azimuthal angle phi resolution as ( phi_track_rec - phi_track_gen )/phi_track_gen phibin = 0.0001 phimin = -0.02 phimax = 0.02 #ptlo = 0. #pthi = 0.9 fitran = [-0.01, 0.01] mmin = 2.8 mmax = 3.2 cbw = rt.kBlue #output log file out = open("out.txt", "w") #log fit parameters loglist1 = [(x, eval(x)) for x in ["infile_mc", "phibin", "phimin", "phimax"]] loglist2 = [(x, eval(x)) for x in ["fitran", "mmin", "mmax"]] strlog = ut.make_log_string(loglist1, loglist2) ut.log_results(out, strlog + "\n") strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) #strsel += " && jGenPt>{0:.3f}".format(ptlo) #strsel += " && jGenPt<{0:.3f}".format(pthi) nbins, phimax = ut.get_nbins(phibin, phimin, phimax) hPhiRel = ut.prepare_TH1D_n("hPhiRel", nbins, phimin, phimax) ytit = "Events / ({0:.4f})".format(phibin) xtit = "(#phi_{rec} - #phi_{gen})/#phi_{gen}" mctree.Draw("(jT0phi-jGenP0phi)/jGenP0phi >> hPhiRel", strsel) # positive charge mctree.Draw("(jT1phi-jGenP1phi)/jGenP1phi >>+hPhiRel", strsel) # add negative charge x = RooRealVar("x", "x", phimin, phimax) x.setRange("fitran", fitran[0], fitran[1]) rfPhiRel = RooDataHist("rfPhiRel", "rfPhiRel", RooArgList(x), hPhiRel) #Breit-Wigner pdf mean = RooRealVar("mean", "mean", 0., -0.1, 0.1) sigma = RooRealVar("sigma", "sigma", 0.01, 0., 0.9) bwpdf = RooBreitWigner("bwpdf", "bwpdf", x, mean, sigma) res = bwpdf.fitTo(rfPhiRel, rf.Range("fitran"), rf.Save()) #log fit results ut.log_results(out, ut.log_fit_result(res)) can = ut.box_canvas() ut.set_margin_lbtr(gPad, 0.12, 0.1, 0.05, 0.03) frame = x.frame(rf.Bins(nbins), rf.Title("")) ut.put_frame_yx_tit(frame, ytit, xtit) rfPhiRel.plotOn(frame, rf.Name("data")) bwpdf.plotOn(frame, rf.Precision(1e-6), rf.Name("bwpdf")) frame.Draw() desc = pdesc(frame, 0.12, 0.93, 0.057) #x, y, sep desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("bwpdf", "data", 2), -1, cbw) desc.prec = 2 desc.fmt = "e" desc.itemR("mean", mean, cbw) desc.itemR("#sigma", sigma, cbw) desc.draw() leg = ut.make_uo_leg(hPhiRel, 0.5, 0.8, 0.2, 0.2) #leg.Draw("same") #print "Entries: ", hPhiRel.GetEntries() #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def plot_zdc_tpc_vtx_diff(): #difference between TPC and ZDC vertex dbin = 2.5 dmin = -90 dmax = 130 #dmin = -1500 #dmax = 2000 mmin = 1.5 mmax = 5. fitcol = rt.kBlue out = open("out.txt", "w") ut.log_results(out, "in " + infile) strlog = "dbin " + str(dbin) + " dmin " + str(dmin) + " dmax " + str(dmax) strlog += " mmin " + str(mmin) + " mmax " + str(mmax) + "\n" ut.log_results(out, strlog) can = ut.box_canvas() strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) hDVtx = ut.prepare_TH1D("hDVtx", dbin, dmin, dmax) tree.Draw("jZDCVtxZ-jVtxZ >> hDVtx", strsel) #fit function f1 = TF1("f1", "gaus+[3]", -50, 105) f1.SetNpx(1000) f1.SetLineColor(fitcol) f1.SetParameter(0, 77) f1.SetParameter(1, 25) f1.SetParameter(2, 13) f1.SetParameter(3, 5) f1.SetParName(0, "norm") f1.SetParName(1, "mean") f1.SetParName(2, "sigma") f1.SetParName(3, "ofs") #make the fit r1 = (hDVtx.Fit(f1, "RS")).Get() out.write(ut.log_tfit_result(r1)) #r1.Print() #fraction of events within +/- 4 sigma t1 = tree.CopyTree(strsel) nall = t1.GetEntries() lo = f1.GetParameter(1) - 4. * f1.GetParameter(2) hi = f1.GetParameter(1) + 4. * f1.GetParameter(2) nsel = t1.Draw( "", "(jZDCVtxZ-jVtxZ)>{0:.3f} && (jZDCVtxZ-jVtxZ)<{1:.3f}".format(lo, hi)) fraction = float(nsel) / float(nall) err = fraction * ma.sqrt(float(nall - nsel) / (nall * nsel)) ut.log_results(out, "Fraction of events within +/- 4 sigma") ut.log_results(out, "4sigma interval: " + str(lo) + " " + str(hi)) ut.log_results(out, "nall: " + str(nall)) ut.log_results(out, "nsel: " + str(nsel)) ut.log_results(out, "f_4s: {0:.3f} +/- {1:.3f}".format(fraction, err)) print("4sigma interval:", lo, hi) print("nall:", nall) print("nsel:", nsel) print("f_4s: {0:.3f} +/- {1:.3f}".format(fraction, err)) hDVtx.SetYTitle("Events / {0:.1f} cm".format(dbin)) hDVtx.SetXTitle("Vertex #it{z}_{ZDC} - #it{z}_{TPC} (cm)") hDVtx.SetTitleOffset(1.5, "Y") hDVtx.SetTitleOffset(1.3, "X") gPad.SetTopMargin(0.012) gPad.SetRightMargin(0.04) gPad.SetBottomMargin(0.1) gPad.SetLeftMargin(0.1) #fit parameters on the plot desc = pdesc(hDVtx, 0.16, 0.84, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, fitcol) desc.prec = 2 desc.itemRes("norm", r1, 0, fitcol) desc.itemRes("mean", r1, 1, fitcol) desc.itemRes("#it{#sigma}", r1, 2, fitcol) desc.itemRes("ofs", r1, 3, fitcol) #cut lines at mean +/- 4sigma #cut_lo = ut.cut_line(-20, 0.5, hDVtx) #cut_hi = ut.cut_line(70, 0.5, hDVtx) leg = ut.prepare_leg(0.14, 0.82, 0.28, 0.136, 0.025) leg.SetMargin(0.17) ut.add_leg_mass(leg, mmin, mmax) leg.AddEntry(hDVtx, "Data") leg.AddEntry(f1, "Gaussian + offset", "l") #leg.AddEntry(cut_lo, "4#it{#sigma} at -20 and 70 cm", "l") hDVtx.Draw() leg.Draw("same") desc.draw() #cut_lo.Draw("same") #cut_hi.Draw("same") #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
#c1f.setVal(1.338) #c2f.setVal(0.172) lamF.setVal(-1.0517) c1f.setVal(1.3399) c2f.setVal(0.16973) bkgd_f.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed), rf.Name("Background_f")) frame.Draw() frame.SetXTitle("#it{m}_{e^{+}e^{-}} (GeV/#it{c}^{2})") frame.SetYTitle("Dielectron counts / (%.0f MeV/#it{c}^{2})" % (1000. * mbin)) #fit parameters on the plot desc = pdesc(frame, 0.75, 0.78, 0.045) #x, y, sep desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("Background", "data", 3), -1, cbkg) desc.itemR("#lambda", lam, cbkg) desc.itemR("#it{c}_{1}", c1, cbkg) desc.itemR("#it{c}_{2}", c2, cbkg) desc.draw() #legend for data and fit function bkgfunc = "(#it{m}-#it{c}_{1})#it{e}^{#lambda(#it{m}-#it{c}_{1})^{2}+#it{c}_{2}(#it{m}-#it{c}_{1})^{3}}" hx = ut.prepare_TH1D("hx", 1, 0, 1) lx = ut.col_lin(cbkg) leg = ut.prepare_leg(0.58, 0.82, 0.39, 0.1, 0.029) # x, y, dx, dy, tsiz leg.SetMargin(0.1)
def fit_vtx_z(): #gaussian fit to vertex z-position datamc = False #true - data, false - mc if datamc: vbin = 4. else: vbin = 2 vmax = 120. mmin = 1.5 mmax = 5. if datamc: fit_lo = -30. fit_hi = 35. else: fit_lo = -40. fit_hi = 45. fitcol = rt.kBlue strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) out = open("out.txt", "w") can = ut.box_canvas() hVtx = ut.prepare_TH1D("hVtx", vbin, -vmax, vmax) if datamc: tree.Draw("jVtxZ >> hVtx", strsel) else: mctree.Draw("jVtxZ >> hVtx", strsel) f1 = TF1("f1", "gaus", fit_lo, fit_hi) f1.SetNpx(1000) f1.SetLineColor(fitcol) #make the fit r1 = (hVtx.Fit(f1, "RS")).Get() out.write(ut.log_tfit_result(r1)) hVtx.SetYTitle("Counts / {0:.0f} cm".format(vbin)); hVtx.SetXTitle("#it{z} of primary vertex (cm)"); hVtx.SetTitleOffset(1.5, "Y") hVtx.SetTitleOffset(1.3, "X") gPad.SetTopMargin(0.02) gPad.SetRightMargin(0.02) gPad.SetBottomMargin(0.1) gPad.SetLeftMargin(0.11) leg = ut.prepare_leg(0.15, 0.82, 0.28, 0.12, 0.025) leg.SetMargin(0.17) ut.add_leg_mass(leg, mmin, mmax) if datamc: leg.AddEntry(hVtx, "Data") else: leg.AddEntry(hVtx, "Embedding MC #gamma#gamma") leg.AddEntry(f1, "Gaussian fit", "l") #fit parameters on the plot desc = pdesc(hVtx, 0.14, 0.82, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2()/r1.Ndf(), -1, fitcol) desc.prec = 2 desc.itemRes("mean", r1, 1, fitcol) desc.itemRes("#it{#sigma}", r1, 2, fitcol) desc.itemRes("norm", r1, 0, fitcol) hVtx.Draw() leg.Draw("same") desc.draw() #ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
def fit_pt_incoh(): #fit to incoherent MC pT ptbin = 0.015 #ptbin = math.sqrt(0.005) ptmin = 0. ptmax = 1.4 mmin = 2.8 mmax = 3.2 fitran = [0.4, 1.] strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) can = ut.box_canvas() hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax) ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV)", "#it{p}_{T} (GeV)") tree_incoh.Draw("jRecPt >> hPtIncoh", strsel) print "Input events:", hPtIncoh.GetEntries() print "Histogram integral:", hPtIncoh.Integral() print "Histogram integral (w):", hPtIncoh.Integral("width") #hPtIncoh.Sumw2() #hPtIncoh.Scale(1./hPtIncoh.Integral("width")) ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02) func_incoh = TF1("func_incoh", "2*[0]*x*exp(-[1]*x*x)", 0., 10.) func_incoh.SetParName(0, "A") func_incoh.SetParName(1, "b") func_incoh.SetNpx(1000) func_incoh.SetLineColor(rt.kRed) func_incoh.SetParameters(3000., 5.) r1 = (hPtIncoh.Fit(func_incoh, "RS", "", fitran[0], fitran[1])).Get() print "Fit integral:", func_incoh.Integral(0., 10.) hPtIncoh.Draw() func_incoh.Draw("same") #normalize fit function to number of events pdf_incoh = TF1("pdf_incoh", "2*[0]*x*exp(-[1]*x*x)", 0., 10.) pdf_incoh.SetParName(0, "A") pdf_incoh.SetParName(1, "b") # tree_incoh.Draw("jRecPt >> hPtIncoh", strsel) #strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax) nevt = tree_incoh.Draw( "", strsel + " && jRecPt>{0:.3f} && jRecPt<{1:.3f}".format(fitran[0], fitran[1])) k_norm = nevt / func_incoh.Integral(fitran[0], fitran[1]) pdf_incoh.SetParameter(0, k_norm * func_incoh.GetParameter(0)) pdf_incoh.SetParameter(1, func_incoh.GetParameter(1)) #verify the normalization: print "Function integral after norm:", pdf_incoh.Integral(0., 10.) #create pdf for pT^2 and verify normalization pdf_pt2 = TF1("pdf_pt2", "[0]*exp(-[1]*x)", 0., 10.) pdf_pt2.SetParameter(0, pdf_incoh.GetParameter(0)) pdf_pt2.SetParameter(1, pdf_incoh.GetParameter(1)) print "PDF for pT^2 integral:", pdf_pt2.Integral(0., 10.) leg = ut.prepare_leg(0.67, 0.84, 0.14, 0.12, 0.03) ut.add_leg_mass(leg, mmin, mmax) leg.AddEntry(hPtIncoh, "Incoherent MC") leg.AddEntry(func_incoh, "2#it{A}*#it{p}_{T}exp(-#it{b}*#it{p}_{T}^{2})", "l") leg.Draw("same") desc = pdesc(hPtIncoh, 0.72, 0.84, 0.057) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed) desc.prec = 2 desc.itemRes("#it{A}", r1, 0, rt.kRed) desc.itemD("#it{A}", pdf_incoh.GetParameter(0), -1, rt.kRed) desc.prec = 3 desc.itemRes("#it{b}", r1, 1, rt.kRed) desc.draw() l0 = ut.cut_line(fitran[0], 0.9, hPtIncoh) l1 = ut.cut_line(fitran[1], 0.9, hPtIncoh) l0.Draw() l1.Draw() uoleg = ut.make_uo_leg(hPtIncoh, 0.14, 0.9, 0.01, 0.1) uoleg.Draw("same") ut.invert_col(rt.gPad) can.SaveAs("01fig.pdf")
model.plotOn(frame, rf.Name("g0"), rf.Components("g0"), rf.LineColor(col0)) model.plotOn(frame, rf.Name("gL"), rf.Components("gL"), rf.LineColor(colLR)) model.plotOn(frame, rf.Name("gR"), rf.Components("gR"), rf.LineColor(colLR)) model.plotOn(frame, rf.Name("Model"), rf.LineColor(colM)) frame.SetXTitle("ZDC vertex along #it{z} (cm)") frame.SetYTitle("Events / {0:.1f} cm".format(vbin)) print "chi2/ndf:", frame.chiSquare("Model", "data", 9) frame.Draw() #put fit parameters desc = pdesc(frame, 0.15, 0.9, 0.045) desc.set_text_size(0.03) desc.itemD("#chi^{2}/ndf", frame.chiSquare("Model", "data", 9), -1, colM) desc.prec = 0 desc.itemR("norm", n0, col0) desc.prec = 2 desc.itemR("#mu", m0, col0) desc.itemR("#sigma", sig0, col0) desc.draw() #side gaussians desc2 = pdesc(frame, 0.7, 0.92, 0.045) desc2.prec = 0 desc2.itemR("norm_{lo}", nL, colLR) desc2.itemR("norm_{hi}", nR, colLR) desc2.prec = 2