예제 #1
0
class Waterer(object):
    """ Run smith-waterman on the query sequences in <infname> """
    def __init__(self, args, input_info, reco_info, germline_seqs, parameter_dir, write_parameters=False):
        self.parameter_dir = parameter_dir
        self.args = args
        self.debug = self.args.debug if self.args.sw_debug is None else self.args.sw_debug

        self.input_info = input_info
        self.remaining_queries = [query for query in self.input_info.keys()]  # we remove queries from this list when we're satisfied with the current output (in general we may have to rerun some queries with different match/mismatch scores)
        self.new_indels = 0  # number of new indels that were kicked up this time through

        self.reco_info = reco_info
        self.germline_seqs = germline_seqs
        self.pcounter, self.true_pcounter, self.perfplotter = None, None, None
        if write_parameters:
            self.pcounter = ParameterCounter(self.germline_seqs)
            if not self.args.is_data:
                self.true_pcounter = ParameterCounter(self.germline_seqs)
        if self.args.plot_performance:
            self.perfplotter = PerformancePlotter(self.germline_seqs, 'sw')
        self.info = {}
        self.info['queries'] = []
        self.info['all_best_matches'] = set()  # set of all the matches we found (for *all* queries)
        self.info['skipped_unproductive_queries'] = []  # list of unproductive queries
        # self.info['skipped_indel_queries'] = []  # list of queries that had indels
        self.info['skipped_unknown_queries'] = []
        self.info['indels'] = {}
        if self.args.apply_choice_probs_in_sw:
            if self.debug:
                print '  reading gene choice probs from', parameter_dir
            self.gene_choice_probs = utils.read_overall_gene_probs(parameter_dir)

        with opener('r')(self.args.datadir + '/v-meta.json') as json_file:  # get location of <begin> cysteine in each v region
            self.cyst_positions = json.load(json_file)
        with opener('r')(self.args.datadir + '/j_tryp.csv') as csv_file:  # get location of <end> tryptophan in each j region (TGG)
            tryp_reader = csv.reader(csv_file)
            self.tryp_positions = {row[0]:row[1] for row in tryp_reader}  # WARNING: this doesn't filter out the header line

        self.outfile = None
        if self.args.outfname is not None:
            self.outfile = open(self.args.outfname, 'a')

        self.n_unproductive = 0
        self.n_total = 0

        print 'smith-waterman'

    # ----------------------------------------------------------------------------------------
    def __del__(self):
        if self.args.outfname is not None:
            self.outfile.close()

    # ----------------------------------------------------------------------------------------
    def clean(self):
        if self.pcounter is not None:
            self.pcounter.clean()
        if self.true_pcounter is not None:
            self.true_pcounter.clean()

    # ----------------------------------------------------------------------------------------
    def run(self):
        # start = time.time()
        base_infname = 'query-seqs.fa'
        base_outfname = 'query-seqs.bam'
        sys.stdout.flush()

        n_tries = 0
        while len(self.remaining_queries) > 0:  # we remove queries from <self.remaining_queries> as we're satisfied with their output
            self.write_vdjalign_input(base_infname, n_procs=self.args.n_fewer_procs)
            self.execute_command(base_infname, base_outfname, self.args.n_fewer_procs)
            self.read_output(base_outfname, n_procs=self.args.n_fewer_procs)
            n_tries += 1
            if n_tries > 2:
                self.info['skipped_unknown_queries'] += self.remaining_queries
                break

        self.finalize()

    # ----------------------------------------------------------------------------------------
    def finalize(self):
        if self.perfplotter is not None:
            self.perfplotter.plot(self.args.plotdir + '/sw/performance')
        # print '    sw time: %.3f' % (time.time()-start)
        if self.n_unproductive > 0:
            print '      unproductive skipped %d / %d = %.2f' % (self.n_unproductive, self.n_total, float(self.n_unproductive) / self.n_total)
        # if len(self.info['skipped_indel_queries']) > 0:
        #     print '      indels skipped %d / %d = %.2f' % (len(self.info['skipped_indel_queries']), self.n_total, float(len(self.info['skipped_indel_queries'])) / self.n_total)
        if len(self.info['indels']) > 0:
            print '      indels: %s' % ':'.join(self.info['indels'].keys())
        if self.pcounter is not None:
            self.pcounter.write(self.parameter_dir)
            if self.args.plotdir is not None:
                self.pcounter.plot(self.args.plotdir + '/sw', subset_by_gene=True, cyst_positions=self.cyst_positions, tryp_positions=self.tryp_positions)
                if self.true_pcounter is not None:
                    self.true_pcounter.plot(self.args.plotdir + 'sw/true', subset_by_gene=True, cyst_positions=self.cyst_positions, tryp_positions=self.tryp_positions)

    # ----------------------------------------------------------------------------------------
    def execute_command(self, base_infname, base_outfname, n_procs):
        if n_procs == 1:
            cmd_str = self.get_vdjalign_cmd_str(self.args.workdir, base_infname, base_outfname)
            proc = Popen(cmd_str.split(), stdout=PIPE, stderr=PIPE)
            out, err = proc.communicate()
            utils.process_out_err(out, err)
            if not self.args.no_clean:
                os.remove(self.args.workdir + '/' + base_infname)
        else:
            procs = []
            for iproc in range(n_procs):
                cmd_str = self.get_vdjalign_cmd_str(self.args.workdir + '/sw-' + str(iproc), base_infname, base_outfname)
                procs.append(Popen(cmd_str.split(), stdout=PIPE, stderr=PIPE))
                time.sleep(0.1)
            for iproc in range(len(procs)):
                out, err = procs[iproc].communicate()
                utils.process_out_err(out, err, extra_str=str(iproc))
            if not self.args.no_clean:
                for iproc in range(n_procs):
                    os.remove(self.args.workdir + '/sw-' + str(iproc) + '/' + base_infname)

        sys.stdout.flush()

    # ----------------------------------------------------------------------------------------
    def write_vdjalign_input(self, base_infname, n_procs):
        queries_per_proc = float(len(self.remaining_queries)) / n_procs
        n_queries_per_proc = int(math.ceil(queries_per_proc))
        if n_procs == 1:  # double check for rounding problems or whatnot
            assert n_queries_per_proc == len(self.remaining_queries)
        for iproc in range(n_procs):
            workdir = self.args.workdir
            if n_procs > 1:
                workdir += '/sw-' + str(iproc)
                utils.prep_dir(workdir)
            with opener('w')(workdir + '/' + base_infname) as sub_infile:
                for iquery in range(iproc*n_queries_per_proc, (iproc + 1)*n_queries_per_proc):
                    if iquery >= len(self.remaining_queries):
                        break
                    query_name = self.remaining_queries[iquery]
                    sub_infile.write('>' + query_name + ' NUKES\n')

                    seq = self.input_info[query_name]['seq']
                    if query_name in self.info['indels']:
                        seq = self.info['indels'][query_name]['reversed_seq']  # use the query sequence with shm insertions and deletions reversed
                    sub_infile.write(seq + '\n')

    # ----------------------------------------------------------------------------------------
    def get_vdjalign_cmd_str(self, workdir, base_infname, base_outfname):
        """
        Run smith-waterman alignment (from Connor's ighutils package) on the seqs in <base_infname>, and toss all the top matches into <base_outfname>.
        """
        # large gap-opening penalty: we want *no* gaps in the middle of the alignments
        # match score larger than (negative) mismatch score: we want to *encourage* some level of shm. If they're equal, we tend to end up with short unmutated alignments, which screws everything up
        os.environ['PATH'] = os.getenv('PWD') + '/packages/samtools:' + os.getenv('PATH')
        check_output(['which', 'samtools'])
        if not os.path.exists(self.args.ighutil_dir + '/bin/vdjalign'):
            raise Exception('ERROR ighutil path d.n.e: ' + self.args.ighutil_dir + '/bin/vdjalign')
        cmd_str = self.args.ighutil_dir + '/bin/vdjalign align-fastq -q'
        if self.args.slurm:
            cmd_str = 'srun ' + cmd_str
        cmd_str += ' --max-drop 50'
        match, mismatch = self.args.match_mismatch
        cmd_str += ' --match ' + str(match) + ' --mismatch ' + str(mismatch)
        cmd_str += ' --gap-open ' + str(self.args.gap_open_penalty)  #1000'  #50'
        cmd_str += ' --vdj-dir ' + self.args.datadir
        cmd_str += ' ' + workdir + '/' + base_infname + ' ' + workdir + '/' + base_outfname

        return cmd_str

    # ----------------------------------------------------------------------------------------
    def read_output(self, base_outfname, n_procs=1):
        n_processed = 0
        for iproc in range(n_procs):
            workdir = self.args.workdir
            if n_procs > 1:
                workdir += '/sw-' + str(iproc)
            outfname = workdir + '/' + base_outfname
            with contextlib.closing(pysam.Samfile(outfname)) as bam:
                grouped = itertools.groupby(iter(bam), operator.attrgetter('qname'))
                for _, reads in grouped:  # loop over query sequences
                    self.n_total += 1
                    self.process_query(bam, list(reads))
                    n_processed += 1

            if not self.args.no_clean:
                os.remove(outfname)
                if n_procs > 1:  # still need the top-level workdir
                    os.rmdir(workdir)

        print '    processed %d queries' % n_processed

        if len(self.remaining_queries) > 0:
            if self.new_indels > 0:  # if we skipped some events, and if none of those were because they were indels, then increase mismatch score
                print '      skipped %d queries (%d indels), rerunning them' % (len(self.remaining_queries), self.new_indels)
                self.new_indels = 0
            else:
                print '      skipped %d queries (%d indels), increasing mismatch score (%d --> %d) and rerunning them' % (len(self.remaining_queries), self.new_indels, self.args.match_mismatch[1], self.args.match_mismatch[1] + 1)
                self.args.match_mismatch[1] += 1
                self.new_indels = 0

    # ----------------------------------------------------------------------------------------
    def get_choice_prob(self, region, gene):
        choice_prob = 1.0
        if gene in self.gene_choice_probs[region]:
            choice_prob = self.gene_choice_probs[region][gene]
        else:
            choice_prob = 0.0  # NOTE would it make sense to use something else here?
        return choice_prob

    # ----------------------------------------------------------------------------------------
    def get_indel_info(self, query_name, cigarstr, qrseq, glseq, gene):
        cigars = re.findall('[0-9][0-9]*[A-Z]', cigarstr)  # split cigar string into its parts
        cigars = [(cstr[-1], int(cstr[:-1])) for cstr in cigars]  # split each part into the code and the length

        codestr = ''
        qpos = 0  # position within query sequence
        indelfo = {'reversed_seq' : '', 'indels' : []}  # replacement_seq: query seq with insertions removed and germline bases inserted at the position of deletions
        tmp_indices = []
        for code, length in cigars:
            codestr += length * code
            if code == 'I':  # advance qr seq but not gl seq
                indelfo['indels'].append({'type' : 'insertion', 'pos' : qpos, 'len' : length, 'seqstr' : ''})  # insertion begins at <pos>
                tmp_indices += [len(indelfo['indels']) - 1  for _ in range(length)]# indel index corresponding to this position in the alignment
            elif code == 'D':  # advance qr seq but not gl seq
                indelfo['indels'].append({'type' : 'deletion', 'pos' : qpos, 'len' : length, 'seqstr' : ''})  # first deleted base is <pos> (well, first base which is in the position of the first deleted base)
                tmp_indices += [len(indelfo['indels']) - 1  for _ in range(length)]# indel index corresponding to this position in the alignment
            else:
                tmp_indices += [None  for _ in range(length)]  # indel index corresponding to this position in the alignment
            qpos += length

        qrprintstr, glprintstr = '', ''
        iqr, igl = 0, 0
        for icode in range(len(codestr)):
            code = codestr[icode]
            if code == 'M':
                qrbase = qrseq[iqr]
                if qrbase != glseq[igl]:
                    qrbase = utils.color('red', qrbase)
                qrprintstr += qrbase
                glprintstr += glseq[igl]
                indelfo['reversed_seq'] += qrseq[iqr]  # add the base to the overall sequence with all indels reversed
            elif code == 'S':
                continue
            elif code == 'I':
                qrprintstr += utils.color('light_blue', qrseq[iqr])
                glprintstr += utils.color('light_blue', '*')
                indelfo['indels'][tmp_indices[icode]]['seqstr'] += qrseq[iqr]  # and to the sequence of just this indel
                igl -= 1
            elif code == 'D':
                qrprintstr += utils.color('light_blue', '*')
                glprintstr += utils.color('light_blue', glseq[igl])
                indelfo['reversed_seq'] += glseq[igl]  # add the base to the overall sequence with all indels reversed
                indelfo['indels'][tmp_indices[icode]]['seqstr'] += glseq[igl]  # and to the sequence of just this indel
                iqr -= 1
            else:
                raise Exception('unhandled code %s' % code)

            iqr += 1
            igl += 1

        print '\n      indels in %s' % query_name
        print '          %20s %s' % (gene, glprintstr)
        print '          %20s %s' % ('query', qrprintstr)
        for idl in indelfo['indels']:
            print '          %10s: %d bases at %d (%s)' % (idl['type'], idl['len'], idl['pos'], idl['seqstr'])
        # utils.undo_indels(indelfo)
        # print '                       %s' % self.input_info[query_name]['seq']

        return indelfo

    # ----------------------------------------------------------------------------------------
    def process_query(self, bam, reads):
        primary = next((r for r in reads if not r.is_secondary), None)
        query_seq = primary.seq
        query_name = primary.qname
        first_match_query_bounds = None  # since sw excises its favorite v match, we have to know this match's boundaries in order to calculate k_d for all the other matches
        all_match_names = {}
        warnings = {}  # ick, this is a messy way to pass stuff around
        for region in utils.regions:
            all_match_names[region] = []
        all_query_bounds, all_germline_bounds = {}, {}
        n_skipped_invalid_cpos = 0
        for read in reads:  # loop over the matches found for each query sequence
            # set this match's values
            read.seq = query_seq  # only the first one has read.seq set by default, so we need to set the rest by hand
            gene = bam.references[read.tid]
            region = utils.get_region(gene)
            raw_score = read.tags[0][1]  # raw because they don't include the gene choice probs
            score = raw_score
            if self.args.apply_choice_probs_in_sw:  # NOTE I stopped applying the gene choice probs here because the smith-waterman scores don't correspond to log-probs, so throwing on the gene choice probs was dubious (and didn't seem to work that well)
                score = self.get_choice_prob(region, gene) * raw_score  # multiply by the probability to choose this gene
            qrbounds = (read.qstart, read.qend)
            glbounds = (read.pos, read.aend)
            if region == 'v' and first_match_query_bounds is None:
                first_match_query_bounds = qrbounds

            # perform a few checks and see if we want to skip this match
            if region == 'v':  # skip matches with cpos past the end of the query seq (i.e. eroded a ton on the right side of the v)
                cpos = utils.get_conserved_codon_position(self.cyst_positions, self.tryp_positions, 'v', gene, glbounds, qrbounds, assert_on_fail=False)
                if not utils.check_conserved_cysteine(self.germline_seqs['v'][gene], self.cyst_positions[gene]['cysteine-position'], assert_on_fail=False):  # some of the damn cysteine positions in the json file were wrong, so now we check
                    raise Exception('bad cysteine in %s: %d %s' % (gene, self.cyst_positions[gene]['cysteine-position'], self.germline_seqs['v'][gene]))
                if cpos < 0 or cpos >= len(query_seq):
                    n_skipped_invalid_cpos += 1
                    continue

            if 'I' in read.cigarstring or 'D' in read.cigarstring:  # skip indels, and tell the HMM to skip indels (you won't see any unless you decrease the <self.args.gap_open_penalty>)
                if len(all_match_names[region]) == 0:  # if this is the first (best) match for this region, allow indels (otherwise skip the match)
                    if query_name not in self.info['indels']:
                        self.info['indels'][query_name] = self.get_indel_info(query_name, read.cigarstring, query_seq[qrbounds[0] : qrbounds[1]], self.germline_seqs[region][gene][glbounds[0] : glbounds[1]], gene)
                        self.info['indels'][query_name]['reversed_seq'] = query_seq[ : qrbounds[0]] + self.info['indels'][query_name]['reversed_seq'] + query_seq[qrbounds[1] : ]
                        self.new_indels += 1
                        # print ' query seq  %s' % query_seq
                        # print 'indelfo seq %s' % self.info['indels'][query_name]['reversed_seq']
                        # self.info['skipped_indel_queries'].append(query_name)
                        # self.info[query_name] = {'indels'}
                    else:
                        print '     multiple indels for %s' % query_name
                    return
                else:
                    continue

            if qrbounds[1]-qrbounds[0] != glbounds[1]-glbounds[0]:
                raise Exception('germline match (%d %d) not same length as query match (%d %d)' % (qrbounds[0], qrbounds[1], glbounds[0], glbounds[1]))

            assert qrbounds[1] <= len(query_seq)
            if glbounds[1] > len(self.germline_seqs[region][gene]):
                print '  ', gene
                print '  ', glbounds[1], len(self.germline_seqs[region][gene])
                print '  ', self.germline_seqs[region][gene]
            assert glbounds[1] <= len(self.germline_seqs[region][gene])
            assert qrbounds[1]-qrbounds[0] == glbounds[1]-glbounds[0]

            # and finally add this match's information
            warnings[gene] = ''
            all_match_names[region].append((score, gene))  # NOTE it is important that this is ordered such that the best match is first
            all_query_bounds[gene] = qrbounds
            all_germline_bounds[gene] = glbounds

        # if n_skipped_invalid_cpos > 0:
        #     print '      skipped %d invalid cpos values for %s' % (n_skipped_invalid_cpos, query_name)
        self.summarize_query(query_name, query_seq, all_match_names, all_query_bounds, all_germline_bounds, warnings, first_match_query_bounds)

    # ----------------------------------------------------------------------------------------
    def print_match(self, region, gene, query_seq, score, glbounds, qrbounds, codon_pos, warnings, skipping=False):
        if self.debug < 2:
            return
        out_str_list = []
        buff_str = (20 - len(gene)) * ' '
        tmp_val = score
        if self.args.apply_choice_probs_in_sw and self.get_choice_prob(region, gene) != 0.0:
            tmp_val = score / self.get_choice_prob(region, gene)
        if self.args.apply_choice_probs_in_sw:
            out_str_list.append('%8s%s%s%9.1e * %3.0f = %-6.1f' % (' ', utils.color_gene(gene), buff_str, self.get_choice_prob(region, gene), tmp_val, score))
        else:
            out_str_list.append('%8s%s%s%9s%3s %6.0f        ' % (' ', utils.color_gene(gene), '', '', buff_str, score))
        out_str_list.append('%4d%4d   %s\n' % (glbounds[0], glbounds[1], self.germline_seqs[region][gene][glbounds[0]:glbounds[1]]))
        out_str_list.append('%46s  %4d%4d' % ('', qrbounds[0], qrbounds[1]))
        out_str_list.append('   %s ' % (utils.color_mutants(self.germline_seqs[region][gene][glbounds[0]:glbounds[1]], query_seq[qrbounds[0]:qrbounds[1]])))
        if region != 'd':
            out_str_list.append('(%s %d)' % (utils.conserved_codon_names[region], codon_pos))
        if warnings[gene] != '':
            out_str_list.append('WARNING ' + warnings[gene])
        if skipping:
            out_str_list.append('skipping!')
        if self.args.outfname is None:
            print ''.join(out_str_list)
        else:
            out_str_list.append('\n')
            self.outfile.write(''.join(out_str_list))

    # ----------------------------------------------------------------------------------------
    def shift_overlapping_boundaries(self, qrbounds, glbounds, query_name, query_seq, best):
        # NOTE this does pretty much the same thing as resolve_overlapping_matches in joinparser.py
        """ s-w allows d and j matches (and v and d matches) to overlap... which makes no sense, so apportion the disputed territory between the two regions """
        for region_pairs in ({'left':'v', 'right':'d'}, {'left':'d', 'right':'j'}):
            l_reg = region_pairs['left']
            r_reg = region_pairs['right']
            l_gene = best[l_reg]
            r_gene = best[r_reg]
            overlap = qrbounds[l_gene][1] - qrbounds[r_gene][0]
            if overlap > 0:
                l_length = qrbounds[l_gene][1] - qrbounds[l_gene][0]
                r_length = qrbounds[r_gene][1] - qrbounds[r_gene][0]
                l_portion, r_portion = 0, 0
                while l_portion + r_portion < overlap:
                    if l_length <= 1 and r_length <= 1:  # don't want to erode match (in practice it'll be the d match) all the way to zero
                        print '      ERROR both lengths went to zero'
                        assert False
                    elif l_length > 1 and r_length > 1:  # if both have length left, alternate back and forth
                        if (l_portion + r_portion) % 2 == 0:
                            l_portion += 1  # give one base to the left
                            l_length -= 1
                        else:
                            r_portion += 1  # and one to the right
                            r_length -= 1
                    elif l_length > 1:
                        l_portion += 1
                        l_length -= 1
                    elif r_length > 1:
                        r_portion += 1
                        r_length -= 1

                if self.debug:
                    print '      WARNING %s apportioning %d bases between %s (%d) match and %s (%d) match' % (query_name, overlap, l_reg, l_portion, r_reg, r_portion)
                assert l_portion + r_portion == overlap
                qrbounds[l_gene] = (qrbounds[l_gene][0], qrbounds[l_gene][1] - l_portion)
                glbounds[l_gene] = (glbounds[l_gene][0], glbounds[l_gene][1] - l_portion)
                qrbounds[r_gene] = (qrbounds[r_gene][0] + r_portion, qrbounds[r_gene][1])
                glbounds[r_gene] = (glbounds[r_gene][0] + r_portion, glbounds[r_gene][1])

                best[l_reg + '_gl_seq'] = self.germline_seqs[l_reg][l_gene][glbounds[l_gene][0] : glbounds[l_gene][1]]
                best[l_reg + '_qr_seq'] = query_seq[qrbounds[l_gene][0]:qrbounds[l_gene][1]]
                best[r_reg + '_gl_seq'] = self.germline_seqs[r_reg][r_gene][glbounds[r_gene][0] : glbounds[r_gene][1]]
                best[r_reg + '_qr_seq'] = query_seq[qrbounds[r_gene][0]:qrbounds[r_gene][1]]

    # ----------------------------------------------------------------------------------------
    def add_to_info(self, query_name, query_seq, kvals, match_names, best, all_germline_bounds, all_query_bounds, codon_positions):
        assert query_name not in self.info
        self.info['queries'].append(query_name)
        self.info[query_name] = {}
        self.info[query_name]['unique_id'] = query_name  # redundant, but used somewhere down the line
        self.info[query_name]['k_v'] = kvals['v']
        self.info[query_name]['k_d'] = kvals['d']
        self.info[query_name]['all'] = ':'.join(match_names['v'] + match_names['d'] + match_names['j'])

        # assert codon_positions['v'] != -1
        # assert codon_positions['j'] != -1
        self.info[query_name]['cdr3_length'] = codon_positions['j'] - codon_positions['v'] + 3  #tryp_position_in_joined_seq - self.cyst_position + 3
        self.info[query_name]['cyst_position'] = codon_positions['v']
        self.info[query_name]['tryp_position'] = codon_positions['j']
        if self.info[query_name]['cyst_position'] < 0 or self.info[query_name]['cyst_position'] >= len(query_seq):
            raise Exception('cpos %d invalid for %s (%s)' % (self.info[query_name]['cyst_position'], query_name, query_seq))
        if self.info[query_name]['tryp_position'] < 0 or self.info[query_name]['tryp_position'] >= len(query_seq):
            raise Exception('tpos %d invalid for %s (%s)' % (self.info[query_name]['tryp_position'], query_name, query_seq))

        # erosion, insertion, mutation info for best match
        self.info[query_name]['v_5p_del'] = all_germline_bounds[best['v']][0]
        self.info[query_name]['v_3p_del'] = len(self.germline_seqs['v'][best['v']]) - all_germline_bounds[best['v']][1]  # len(germline v) - gl_match_end
        self.info[query_name]['d_5p_del'] = all_germline_bounds[best['d']][0]
        self.info[query_name]['d_3p_del'] = len(self.germline_seqs['d'][best['d']]) - all_germline_bounds[best['d']][1]
        self.info[query_name]['j_5p_del'] = all_germline_bounds[best['j']][0]
        self.info[query_name]['j_3p_del'] = len(self.germline_seqs['j'][best['j']]) - all_germline_bounds[best['j']][1]

        self.info[query_name]['fv_insertion'] = query_seq[ : all_query_bounds[best['v']][0]]
        self.info[query_name]['vd_insertion'] = query_seq[all_query_bounds[best['v']][1] : all_query_bounds[best['d']][0]]
        self.info[query_name]['dj_insertion'] = query_seq[all_query_bounds[best['d']][1] : all_query_bounds[best['j']][0]]
        self.info[query_name]['jf_insertion'] = query_seq[all_query_bounds[best['j']][1] : ]

        for region in utils.regions:
            self.info[query_name][region + '_gene'] = best[region]
            self.info[query_name][region + '_gl_seq'] = best[region + '_gl_seq']
            self.info[query_name][region + '_qr_seq'] = best[region + '_qr_seq']
            self.info['all_best_matches'].add(best[region])

        self.info[query_name]['seq'] = query_seq  # NOTE this is the seq output by vdjalign, i.e. if we reversed any indels it is the reversed sequence
        if self.debug:
            if not self.args.is_data:
                utils.print_reco_event(self.germline_seqs, self.reco_info[query_name], extra_str='      ', label='true:', indelfo=self.reco_info[query_name]['indels'])
            utils.print_reco_event(self.germline_seqs, self.info[query_name], extra_str='      ', label='inferred:', indelfo=self.info['indels'].get(query_name, None))

        if self.pcounter is not None:
            self.pcounter.increment_reco_params(self.info[query_name])
            self.pcounter.increment_mutation_params(self.info[query_name])
        if self.true_pcounter is not None:
            self.true_pcounter.increment_reco_params(self.reco_info[query_name])
            self.true_pcounter.increment_mutation_params(self.reco_info[query_name])
        if self.perfplotter is not None:
            self.perfplotter.evaluate(self.reco_info[query_name], self.info[query_name])  #, subtract_unphysical_erosions=True)

        self.remaining_queries.remove(query_name)

    # ----------------------------------------------------------------------------------------
    def summarize_query(self, query_name, query_seq, all_match_names, all_query_bounds, all_germline_bounds, warnings, first_match_query_bounds):
        if self.debug:
            print '%s' % query_name

        best, match_names, n_matches = {}, {}, {}
        n_used = {'v':0, 'd':0, 'j':0}
        k_v_min, k_d_min = 999, 999
        k_v_max, k_d_max = 0, 0
        for region in utils.regions:
            all_match_names[region] = sorted(all_match_names[region], reverse=True)
            match_names[region] = []
        codon_positions = {'v':-1, 'd':-1, 'j':-1}  # conserved codon positions (v:cysteine, d:dummy, j:tryptophan)
        for region in utils.regions:
            n_matches[region] = len(all_match_names[region])
            n_skipped = 0
            for score, gene in all_match_names[region]:
                glbounds = all_germline_bounds[gene]
                qrbounds = all_query_bounds[gene]
                assert qrbounds[1] <= len(query_seq)  # NOTE I'm putting these up avove as well (in process_query), so in time I should remove them from here
                assert glbounds[1] <= len(self.germline_seqs[region][gene])
                assert qrbounds[0] >= 0
                assert glbounds[0] >= 0
                glmatchseq = self.germline_seqs[region][gene][glbounds[0]:glbounds[1]]

                # TODO since I'm no longer skipping the genes after the first <args.n_max_per_region>, the OR of k-space below is overly conservative

                # only use a specified set of genes
                if self.args.only_genes is not None and gene not in self.args.only_genes:
                    n_skipped += 1
                    continue

                # add match to the list
                n_used[region] += 1
                match_names[region].append(gene)

                self.print_match(region, gene, query_seq, score, glbounds, qrbounds, -1, warnings, skipping=False)

                # if the germline match and the query match aren't the same length, s-w likely added an insert, which we shouldn't get since the gap-open penalty is jacked up so high
                if len(glmatchseq) != len(query_seq[qrbounds[0]:qrbounds[1]]):  # neurotic double check (um, I think) EDIT hey this totally saved my ass
                    print 'ERROR %d not same length' % query_name
                    print glmatchseq, glbounds[0], glbounds[1]
                    print query_seq[qrbounds[0]:qrbounds[1]]
                    assert False

                if region == 'v':
                    this_k_v = all_query_bounds[gene][1]  # NOTE even if the v match doesn't start at the left hand edge of the query sequence, we still measure k_v from there.
                                                          # In other words, sw doesn't tell the hmm about it
                    k_v_min = min(this_k_v, k_v_min)
                    k_v_max = max(this_k_v, k_v_max)
                if region == 'd':
                    this_k_d = all_query_bounds[gene][1] - first_match_query_bounds[1]  # end of d minus end of v
                    k_d_min = min(this_k_d, k_d_min)
                    k_d_max = max(this_k_d, k_d_max)

                # check consistency with best match (since the best match is excised in s-w code, and because ham is run with *one* k_v k_d set)
                if region not in best:
                    best[region] = gene
                    best[region + '_gl_seq'] = self.germline_seqs[region][gene][glbounds[0]:glbounds[1]]
                    best[region + '_qr_seq'] = query_seq[qrbounds[0]:qrbounds[1]]
                    best[region + '_score'] = score

            if self.debug and n_skipped > 0:
                print '%8s skipped %d %s genes' % ('', n_skipped, region)

        for region in utils.regions:
            if region not in best:
                print '      no', region, 'match found for', query_name  # NOTE if no d match found, we should really just assume entire d was eroded
                return

        # s-w allows d and j matches to overlap, so we need to apportion the disputed bases
        try:
            self.shift_overlapping_boundaries(all_query_bounds, all_germline_bounds, query_name, query_seq, best)
        except AssertionError:
            print '%s: apportionment failed' % query_name
            return

        # check for unproductive rearrangements
        for region in utils.regions:
            codon_positions[region] = utils.get_conserved_codon_position(self.cyst_positions, self.tryp_positions, region, best[region], all_germline_bounds[best[region]], all_query_bounds[best[region]], assert_on_fail=False)  # position in the query sequence, that is
        codons_ok = utils.check_both_conserved_codons(query_seq, codon_positions['v'], codon_positions['j'], debug=self.debug, extra_str='      ', assert_on_fail=False)
        cdr3_length = codon_positions['j'] - codon_positions['v'] + 3
        in_frame_cdr3 = (cdr3_length % 3 == 0)
        if self.debug and not in_frame_cdr3:
                print '      out of frame cdr3: %d %% 3 = %d' % (cdr3_length, cdr3_length % 3)
        no_stop_codon = utils.stop_codon_check(query_seq, codon_positions['v'], debug=self.debug)
        if not codons_ok or not in_frame_cdr3 or not no_stop_codon:
            if self.debug:
                print '       unproductive rearrangement in waterer codons_ok: %s   in_frame_cdr3: %s   no_stop_codon: %s' % (codons_ok, in_frame_cdr3, no_stop_codon)
            if self.args.skip_unproductive:
                if self.debug:
                    print '            ...skipping'
                self.n_unproductive += 1
                self.info['skipped_unproductive_queries'].append(query_name)
                return

        # best k_v, k_d:
        k_v = all_query_bounds[best['v']][1]  # end of v match
        k_d = all_query_bounds[best['d']][1] - all_query_bounds[best['v']][1]  # end of d minus end of v

        if k_d_max < 5:  # since the s-w step matches to the longest possible j and then excises it, this sometimes gobbles up the d, resulting in a very short d alignment.
            if self.debug:
                print '  expanding k_d'
            k_d_max = max(8, k_d_max)

        if 'IGHJ4*' in best['j'] and self.germline_seqs['d'][best['d']][-5:] == 'ACTAC':  # the end of some d versions is the same as the start of some j versions, so the s-w frequently kicks out the 'wrong' alignment
            if self.debug:
                print '  doubly expanding k_d'
            if k_d_max-k_d_min < 8:
                k_d_min -= 5
                k_d_max += 2

        k_v_min = max(0, k_v_min - self.args.default_v_fuzz)  # ok, so I don't *actually* want it to be zero... oh, well
        k_v_max += self.args.default_v_fuzz
        k_d_min = max(1, k_d_min - self.args.default_d_fuzz)
        k_d_max += self.args.default_d_fuzz
        assert k_v_min > 0 and k_d_min > 0 and k_v_max > 0 and k_d_max > 0

        if self.debug:
            print '         k_v: %d [%d-%d)' % (k_v, k_v_min, k_v_max)
            print '         k_d: %d [%d-%d)' % (k_d, k_d_min, k_d_max)
            print '         used',
            for region in utils.regions:
                print ' %s: %d/%d' % (region, n_used[region], n_matches[region]),
            print ''


        kvals = {}
        kvals['v'] = {'best':k_v, 'min':k_v_min, 'max':k_v_max}
        kvals['d'] = {'best':k_d, 'min':k_d_min, 'max':k_d_max}
        self.add_to_info(query_name, query_seq, kvals, match_names, best, all_germline_bounds, all_query_bounds, codon_positions=codon_positions)
예제 #2
0
class Waterer(object):
    """ Run smith-waterman on the query sequences in <infname> """
    def __init__(self,
                 args,
                 input_info,
                 reco_info,
                 germline_seqs,
                 parameter_dir,
                 write_parameters=False):
        self.parameter_dir = parameter_dir
        self.args = args
        self.debug = self.args.debug if self.args.sw_debug is None else self.args.sw_debug

        self.input_info = input_info
        self.remaining_queries = [
            query for query in self.input_info.keys()
        ]  # we remove queries from this list when we're satisfied with the current output (in general we may have to rerun some queries with different match/mismatch scores)
        self.new_indels = 0  # number of new indels that were kicked up this time through

        self.reco_info = reco_info
        self.germline_seqs = germline_seqs
        self.pcounter, self.true_pcounter, self.perfplotter = None, None, None
        if write_parameters:
            self.pcounter = ParameterCounter(self.germline_seqs)
            if not self.args.is_data:
                self.true_pcounter = ParameterCounter(self.germline_seqs)
        if self.args.plot_performance:
            self.perfplotter = PerformancePlotter(self.germline_seqs, 'sw')
        self.info = {}
        self.info['queries'] = []
        self.info['all_best_matches'] = set(
        )  # set of all the matches we found (for *all* queries)
        self.info['skipped_unproductive_queries'] = [
        ]  # list of unproductive queries
        # self.info['skipped_indel_queries'] = []  # list of queries that had indels
        self.info['skipped_unknown_queries'] = []
        self.info['indels'] = {}
        if self.args.apply_choice_probs_in_sw:
            if self.debug:
                print '  reading gene choice probs from', parameter_dir
            self.gene_choice_probs = utils.read_overall_gene_probs(
                parameter_dir)

        with opener('r')(
                self.args.datadir + '/v-meta.json'
        ) as json_file:  # get location of <begin> cysteine in each v region
            self.cyst_positions = json.load(json_file)
        with opener('r')(
                self.args.datadir + '/j_tryp.csv'
        ) as csv_file:  # get location of <end> tryptophan in each j region (TGG)
            tryp_reader = csv.reader(csv_file)
            self.tryp_positions = {
                row[0]: row[1]
                for row in tryp_reader
            }  # WARNING: this doesn't filter out the header line

        self.outfile = None
        if self.args.outfname is not None:
            self.outfile = open(self.args.outfname, 'a')

        self.n_unproductive = 0
        self.n_total = 0

        print 'smith-waterman'

    # ----------------------------------------------------------------------------------------
    def __del__(self):
        if self.args.outfname is not None:
            self.outfile.close()

    # ----------------------------------------------------------------------------------------
    def clean(self):
        if self.pcounter is not None:
            self.pcounter.clean()
        if self.true_pcounter is not None:
            self.true_pcounter.clean()

    # ----------------------------------------------------------------------------------------
    def run(self):
        # start = time.time()
        base_infname = 'query-seqs.fa'
        base_outfname = 'query-seqs.bam'
        sys.stdout.flush()

        n_tries = 0
        while len(
                self.remaining_queries
        ) > 0:  # we remove queries from <self.remaining_queries> as we're satisfied with their output
            self.write_vdjalign_input(base_infname,
                                      n_procs=self.args.n_fewer_procs)
            self.execute_command(base_infname, base_outfname,
                                 self.args.n_fewer_procs)
            self.read_output(base_outfname, n_procs=self.args.n_fewer_procs)
            n_tries += 1
            if n_tries > 2:
                self.info['skipped_unknown_queries'] += self.remaining_queries
                break

        self.finalize()

    # ----------------------------------------------------------------------------------------
    def finalize(self):
        if self.perfplotter is not None:
            self.perfplotter.plot(self.args.plotdir + '/sw/performance')
        # print '    sw time: %.3f' % (time.time()-start)
        if self.n_unproductive > 0:
            print '      unproductive skipped %d / %d = %.2f' % (
                self.n_unproductive, self.n_total,
                float(self.n_unproductive) / self.n_total)
        # if len(self.info['skipped_indel_queries']) > 0:
        #     print '      indels skipped %d / %d = %.2f' % (len(self.info['skipped_indel_queries']), self.n_total, float(len(self.info['skipped_indel_queries'])) / self.n_total)
        if len(self.info['indels']) > 0:
            print '      indels: %s' % ':'.join(self.info['indels'].keys())
        if self.pcounter is not None:
            self.pcounter.write(self.parameter_dir)
            if self.args.plotdir is not None:
                self.pcounter.plot(self.args.plotdir + '/sw',
                                   subset_by_gene=True,
                                   cyst_positions=self.cyst_positions,
                                   tryp_positions=self.tryp_positions)
                if self.true_pcounter is not None:
                    self.true_pcounter.plot(self.args.plotdir + 'sw/true',
                                            subset_by_gene=True,
                                            cyst_positions=self.cyst_positions,
                                            tryp_positions=self.tryp_positions)

    # ----------------------------------------------------------------------------------------
    def execute_command(self, base_infname, base_outfname, n_procs):
        if n_procs == 1:
            cmd_str = self.get_vdjalign_cmd_str(self.args.workdir,
                                                base_infname, base_outfname)
            proc = Popen(cmd_str.split(), stdout=PIPE, stderr=PIPE)
            out, err = proc.communicate()
            utils.process_out_err(out, err)
            if not self.args.no_clean:
                os.remove(self.args.workdir + '/' + base_infname)
        else:
            procs = []
            for iproc in range(n_procs):
                cmd_str = self.get_vdjalign_cmd_str(
                    self.args.workdir + '/sw-' + str(iproc), base_infname,
                    base_outfname)
                procs.append(Popen(cmd_str.split(), stdout=PIPE, stderr=PIPE))
                time.sleep(0.1)
            for iproc in range(len(procs)):
                out, err = procs[iproc].communicate()
                utils.process_out_err(out, err, extra_str=str(iproc))
            if not self.args.no_clean:
                for iproc in range(n_procs):
                    os.remove(self.args.workdir + '/sw-' + str(iproc) + '/' +
                              base_infname)

        sys.stdout.flush()

    # ----------------------------------------------------------------------------------------
    def write_vdjalign_input(self, base_infname, n_procs):
        queries_per_proc = float(len(self.remaining_queries)) / n_procs
        n_queries_per_proc = int(math.ceil(queries_per_proc))
        if n_procs == 1:  # double check for rounding problems or whatnot
            assert n_queries_per_proc == len(self.remaining_queries)
        for iproc in range(n_procs):
            workdir = self.args.workdir
            if n_procs > 1:
                workdir += '/sw-' + str(iproc)
                utils.prep_dir(workdir)
            with opener('w')(workdir + '/' + base_infname) as sub_infile:
                for iquery in range(iproc * n_queries_per_proc,
                                    (iproc + 1) * n_queries_per_proc):
                    if iquery >= len(self.remaining_queries):
                        break
                    query_name = self.remaining_queries[iquery]
                    sub_infile.write('>' + query_name + ' NUKES\n')

                    seq = self.input_info[query_name]['seq']
                    if query_name in self.info['indels']:
                        seq = self.info['indels'][query_name][
                            'reversed_seq']  # use the query sequence with shm insertions and deletions reversed
                    sub_infile.write(seq + '\n')

    # ----------------------------------------------------------------------------------------
    def get_vdjalign_cmd_str(self, workdir, base_infname, base_outfname):
        """
        Run smith-waterman alignment (from Connor's ighutils package) on the seqs in <base_infname>, and toss all the top matches into <base_outfname>.
        """
        # large gap-opening penalty: we want *no* gaps in the middle of the alignments
        # match score larger than (negative) mismatch score: we want to *encourage* some level of shm. If they're equal, we tend to end up with short unmutated alignments, which screws everything up
        os.environ['PATH'] = os.getenv(
            'PWD') + '/packages/samtools:' + os.getenv('PATH')
        check_output(['which', 'samtools'])
        if not os.path.exists(self.args.ighutil_dir + '/bin/vdjalign'):
            raise Exception('ERROR ighutil path d.n.e: ' +
                            self.args.ighutil_dir + '/bin/vdjalign')
        cmd_str = self.args.ighutil_dir + '/bin/vdjalign align-fastq -q'
        if self.args.slurm:
            cmd_str = 'srun ' + cmd_str
        cmd_str += ' --max-drop 50'
        match, mismatch = self.args.match_mismatch
        cmd_str += ' --match ' + str(match) + ' --mismatch ' + str(mismatch)
        cmd_str += ' --gap-open ' + str(
            self.args.gap_open_penalty)  #1000'  #50'
        cmd_str += ' --vdj-dir ' + self.args.datadir
        cmd_str += ' ' + workdir + '/' + base_infname + ' ' + workdir + '/' + base_outfname

        return cmd_str

    # ----------------------------------------------------------------------------------------
    def read_output(self, base_outfname, n_procs=1):
        n_processed = 0
        for iproc in range(n_procs):
            workdir = self.args.workdir
            if n_procs > 1:
                workdir += '/sw-' + str(iproc)
            outfname = workdir + '/' + base_outfname
            with contextlib.closing(pysam.Samfile(outfname)) as bam:
                grouped = itertools.groupby(iter(bam),
                                            operator.attrgetter('qname'))
                for _, reads in grouped:  # loop over query sequences
                    self.n_total += 1
                    self.process_query(bam, list(reads))
                    n_processed += 1

            if not self.args.no_clean:
                os.remove(outfname)
                if n_procs > 1:  # still need the top-level workdir
                    os.rmdir(workdir)

        print '    processed %d queries' % n_processed

        if len(self.remaining_queries) > 0:
            if self.new_indels > 0:  # if we skipped some events, and if none of those were because they were indels, then increase mismatch score
                print '      skipped %d queries (%d indels), rerunning them' % (
                    len(self.remaining_queries), self.new_indels)
                self.new_indels = 0
            else:
                print '      skipped %d queries (%d indels), increasing mismatch score (%d --> %d) and rerunning them' % (
                    len(self.remaining_queries), self.new_indels,
                    self.args.match_mismatch[1],
                    self.args.match_mismatch[1] + 1)
                self.args.match_mismatch[1] += 1
                self.new_indels = 0

    # ----------------------------------------------------------------------------------------
    def get_choice_prob(self, region, gene):
        choice_prob = 1.0
        if gene in self.gene_choice_probs[region]:
            choice_prob = self.gene_choice_probs[region][gene]
        else:
            choice_prob = 0.0  # NOTE would it make sense to use something else here?
        return choice_prob

    # ----------------------------------------------------------------------------------------
    def get_indel_info(self, query_name, cigarstr, qrseq, glseq, gene):
        cigars = re.findall('[0-9][0-9]*[A-Z]',
                            cigarstr)  # split cigar string into its parts
        cigars = [(cstr[-1], int(cstr[:-1])) for cstr in cigars
                  ]  # split each part into the code and the length

        codestr = ''
        qpos = 0  # position within query sequence
        indelfo = {
            'reversed_seq': '',
            'indels': []
        }  # replacement_seq: query seq with insertions removed and germline bases inserted at the position of deletions
        tmp_indices = []
        for code, length in cigars:
            codestr += length * code
            if code == 'I':  # advance qr seq but not gl seq
                indelfo['indels'].append({
                    'type': 'insertion',
                    'pos': qpos,
                    'len': length,
                    'seqstr': ''
                })  # insertion begins at <pos>
                tmp_indices += [
                    len(indelfo['indels']) - 1 for _ in range(length)
                ]  # indel index corresponding to this position in the alignment
            elif code == 'D':  # advance qr seq but not gl seq
                indelfo['indels'].append(
                    {
                        'type': 'deletion',
                        'pos': qpos,
                        'len': length,
                        'seqstr': ''
                    }
                )  # first deleted base is <pos> (well, first base which is in the position of the first deleted base)
                tmp_indices += [
                    len(indelfo['indels']) - 1 for _ in range(length)
                ]  # indel index corresponding to this position in the alignment
            else:
                tmp_indices += [
                    None for _ in range(length)
                ]  # indel index corresponding to this position in the alignment
            qpos += length

        qrprintstr, glprintstr = '', ''
        iqr, igl = 0, 0
        for icode in range(len(codestr)):
            code = codestr[icode]
            if code == 'M':
                qrbase = qrseq[iqr]
                if qrbase != glseq[igl]:
                    qrbase = utils.color('red', qrbase)
                qrprintstr += qrbase
                glprintstr += glseq[igl]
                indelfo['reversed_seq'] += qrseq[
                    iqr]  # add the base to the overall sequence with all indels reversed
            elif code == 'S':
                continue
            elif code == 'I':
                qrprintstr += utils.color('light_blue', qrseq[iqr])
                glprintstr += utils.color('light_blue', '*')
                indelfo['indels'][tmp_indices[icode]]['seqstr'] += qrseq[
                    iqr]  # and to the sequence of just this indel
                igl -= 1
            elif code == 'D':
                qrprintstr += utils.color('light_blue', '*')
                glprintstr += utils.color('light_blue', glseq[igl])
                indelfo['reversed_seq'] += glseq[
                    igl]  # add the base to the overall sequence with all indels reversed
                indelfo['indels'][tmp_indices[icode]]['seqstr'] += glseq[
                    igl]  # and to the sequence of just this indel
                iqr -= 1
            else:
                raise Exception('unhandled code %s' % code)

            iqr += 1
            igl += 1

        print '\n      indels in %s' % query_name
        print '          %20s %s' % (gene, glprintstr)
        print '          %20s %s' % ('query', qrprintstr)
        for idl in indelfo['indels']:
            print '          %10s: %d bases at %d (%s)' % (
                idl['type'], idl['len'], idl['pos'], idl['seqstr'])
        # utils.undo_indels(indelfo)
        # print '                       %s' % self.input_info[query_name]['seq']

        return indelfo

    # ----------------------------------------------------------------------------------------
    def process_query(self, bam, reads):
        primary = next((r for r in reads if not r.is_secondary), None)
        query_seq = primary.seq
        query_name = primary.qname
        first_match_query_bounds = None  # since sw excises its favorite v match, we have to know this match's boundaries in order to calculate k_d for all the other matches
        all_match_names = {}
        warnings = {}  # ick, this is a messy way to pass stuff around
        for region in utils.regions:
            all_match_names[region] = []
        all_query_bounds, all_germline_bounds = {}, {}
        n_skipped_invalid_cpos = 0
        for read in reads:  # loop over the matches found for each query sequence
            # set this match's values
            read.seq = query_seq  # only the first one has read.seq set by default, so we need to set the rest by hand
            gene = bam.references[read.tid]
            region = utils.get_region(gene)
            raw_score = read.tags[0][
                1]  # raw because they don't include the gene choice probs
            score = raw_score
            if self.args.apply_choice_probs_in_sw:  # NOTE I stopped applying the gene choice probs here because the smith-waterman scores don't correspond to log-probs, so throwing on the gene choice probs was dubious (and didn't seem to work that well)
                score = self.get_choice_prob(
                    region, gene
                ) * raw_score  # multiply by the probability to choose this gene
            qrbounds = (read.qstart, read.qend)
            glbounds = (read.pos, read.aend)
            if region == 'v' and first_match_query_bounds is None:
                first_match_query_bounds = qrbounds

            # perform a few checks and see if we want to skip this match
            if region == 'v':  # skip matches with cpos past the end of the query seq (i.e. eroded a ton on the right side of the v)
                cpos = utils.get_conserved_codon_position(self.cyst_positions,
                                                          self.tryp_positions,
                                                          'v',
                                                          gene,
                                                          glbounds,
                                                          qrbounds,
                                                          assert_on_fail=False)
                if not utils.check_conserved_cysteine(
                        self.germline_seqs['v'][gene],
                        self.cyst_positions[gene]['cysteine-position'],
                        assert_on_fail=False
                ):  # some of the damn cysteine positions in the json file were wrong, so now we check
                    raise Exception(
                        'bad cysteine in %s: %d %s' %
                        (gene, self.cyst_positions[gene]['cysteine-position'],
                         self.germline_seqs['v'][gene]))
                if cpos < 0 or cpos >= len(query_seq):
                    n_skipped_invalid_cpos += 1
                    continue

            if 'I' in read.cigarstring or 'D' in read.cigarstring:  # skip indels, and tell the HMM to skip indels (you won't see any unless you decrease the <self.args.gap_open_penalty>)
                if len(
                        all_match_names[region]
                ) == 0:  # if this is the first (best) match for this region, allow indels (otherwise skip the match)
                    if query_name not in self.info['indels']:
                        self.info['indels'][query_name] = self.get_indel_info(
                            query_name, read.cigarstring,
                            query_seq[qrbounds[0]:qrbounds[1]],
                            self.germline_seqs[region][gene]
                            [glbounds[0]:glbounds[1]], gene)
                        self.info['indels'][query_name][
                            'reversed_seq'] = query_seq[:qrbounds[
                                0]] + self.info['indels'][query_name][
                                    'reversed_seq'] + query_seq[qrbounds[1]:]
                        self.new_indels += 1
                        # print ' query seq  %s' % query_seq
                        # print 'indelfo seq %s' % self.info['indels'][query_name]['reversed_seq']
                        # self.info['skipped_indel_queries'].append(query_name)
                        # self.info[query_name] = {'indels'}
                    else:
                        print '     multiple indels for %s' % query_name
                    return
                else:
                    continue

            if qrbounds[1] - qrbounds[0] != glbounds[1] - glbounds[0]:
                raise Exception(
                    'germline match (%d %d) not same length as query match (%d %d)'
                    % (qrbounds[0], qrbounds[1], glbounds[0], glbounds[1]))

            assert qrbounds[1] <= len(query_seq)
            if glbounds[1] > len(self.germline_seqs[region][gene]):
                print '  ', gene
                print '  ', glbounds[1], len(self.germline_seqs[region][gene])
                print '  ', self.germline_seqs[region][gene]
            assert glbounds[1] <= len(self.germline_seqs[region][gene])
            assert qrbounds[1] - qrbounds[0] == glbounds[1] - glbounds[0]

            # and finally add this match's information
            warnings[gene] = ''
            all_match_names[region].append(
                (score, gene)
            )  # NOTE it is important that this is ordered such that the best match is first
            all_query_bounds[gene] = qrbounds
            all_germline_bounds[gene] = glbounds

        # if n_skipped_invalid_cpos > 0:
        #     print '      skipped %d invalid cpos values for %s' % (n_skipped_invalid_cpos, query_name)
        self.summarize_query(query_name, query_seq, all_match_names,
                             all_query_bounds, all_germline_bounds, warnings,
                             first_match_query_bounds)

    # ----------------------------------------------------------------------------------------
    def print_match(self,
                    region,
                    gene,
                    query_seq,
                    score,
                    glbounds,
                    qrbounds,
                    codon_pos,
                    warnings,
                    skipping=False):
        if self.debug < 2:
            return
        out_str_list = []
        buff_str = (20 - len(gene)) * ' '
        tmp_val = score
        if self.args.apply_choice_probs_in_sw and self.get_choice_prob(
                region, gene) != 0.0:
            tmp_val = score / self.get_choice_prob(region, gene)
        if self.args.apply_choice_probs_in_sw:
            out_str_list.append(
                '%8s%s%s%9.1e * %3.0f = %-6.1f' %
                (' ', utils.color_gene(gene), buff_str,
                 self.get_choice_prob(region, gene), tmp_val, score))
        else:
            out_str_list.append(
                '%8s%s%s%9s%3s %6.0f        ' %
                (' ', utils.color_gene(gene), '', '', buff_str, score))
        out_str_list.append(
            '%4d%4d   %s\n' %
            (glbounds[0], glbounds[1],
             self.germline_seqs[region][gene][glbounds[0]:glbounds[1]]))
        out_str_list.append('%46s  %4d%4d' % ('', qrbounds[0], qrbounds[1]))
        out_str_list.append('   %s ' % (utils.color_mutants(
            self.germline_seqs[region][gene][glbounds[0]:glbounds[1]],
            query_seq[qrbounds[0]:qrbounds[1]])))
        if region != 'd':
            out_str_list.append(
                '(%s %d)' % (utils.conserved_codon_names[region], codon_pos))
        if warnings[gene] != '':
            out_str_list.append('WARNING ' + warnings[gene])
        if skipping:
            out_str_list.append('skipping!')
        if self.args.outfname is None:
            print ''.join(out_str_list)
        else:
            out_str_list.append('\n')
            self.outfile.write(''.join(out_str_list))

    # ----------------------------------------------------------------------------------------
    def shift_overlapping_boundaries(self, qrbounds, glbounds, query_name,
                                     query_seq, best):
        # NOTE this does pretty much the same thing as resolve_overlapping_matches in joinparser.py
        """ s-w allows d and j matches (and v and d matches) to overlap... which makes no sense, so apportion the disputed territory between the two regions """
        for region_pairs in ({
                'left': 'v',
                'right': 'd'
        }, {
                'left': 'd',
                'right': 'j'
        }):
            l_reg = region_pairs['left']
            r_reg = region_pairs['right']
            l_gene = best[l_reg]
            r_gene = best[r_reg]
            overlap = qrbounds[l_gene][1] - qrbounds[r_gene][0]
            if overlap > 0:
                l_length = qrbounds[l_gene][1] - qrbounds[l_gene][0]
                r_length = qrbounds[r_gene][1] - qrbounds[r_gene][0]
                l_portion, r_portion = 0, 0
                while l_portion + r_portion < overlap:
                    if l_length <= 1 and r_length <= 1:  # don't want to erode match (in practice it'll be the d match) all the way to zero
                        print '      ERROR both lengths went to zero'
                        assert False
                    elif l_length > 1 and r_length > 1:  # if both have length left, alternate back and forth
                        if (l_portion + r_portion) % 2 == 0:
                            l_portion += 1  # give one base to the left
                            l_length -= 1
                        else:
                            r_portion += 1  # and one to the right
                            r_length -= 1
                    elif l_length > 1:
                        l_portion += 1
                        l_length -= 1
                    elif r_length > 1:
                        r_portion += 1
                        r_length -= 1

                if self.debug:
                    print '      WARNING %s apportioning %d bases between %s (%d) match and %s (%d) match' % (
                        query_name, overlap, l_reg, l_portion, r_reg,
                        r_portion)
                assert l_portion + r_portion == overlap
                qrbounds[l_gene] = (qrbounds[l_gene][0],
                                    qrbounds[l_gene][1] - l_portion)
                glbounds[l_gene] = (glbounds[l_gene][0],
                                    glbounds[l_gene][1] - l_portion)
                qrbounds[r_gene] = (qrbounds[r_gene][0] + r_portion,
                                    qrbounds[r_gene][1])
                glbounds[r_gene] = (glbounds[r_gene][0] + r_portion,
                                    glbounds[r_gene][1])

                best[l_reg + '_gl_seq'] = self.germline_seqs[l_reg][l_gene][
                    glbounds[l_gene][0]:glbounds[l_gene][1]]
                best[l_reg + '_qr_seq'] = query_seq[
                    qrbounds[l_gene][0]:qrbounds[l_gene][1]]
                best[r_reg + '_gl_seq'] = self.germline_seqs[r_reg][r_gene][
                    glbounds[r_gene][0]:glbounds[r_gene][1]]
                best[r_reg + '_qr_seq'] = query_seq[
                    qrbounds[r_gene][0]:qrbounds[r_gene][1]]

    # ----------------------------------------------------------------------------------------
    def add_to_info(self, query_name, query_seq, kvals, match_names, best,
                    all_germline_bounds, all_query_bounds, codon_positions):
        assert query_name not in self.info
        self.info['queries'].append(query_name)
        self.info[query_name] = {}
        self.info[query_name][
            'unique_id'] = query_name  # redundant, but used somewhere down the line
        self.info[query_name]['k_v'] = kvals['v']
        self.info[query_name]['k_d'] = kvals['d']
        self.info[query_name]['all'] = ':'.join(match_names['v'] +
                                                match_names['d'] +
                                                match_names['j'])

        # assert codon_positions['v'] != -1
        # assert codon_positions['j'] != -1
        self.info[query_name][
            'cdr3_length'] = codon_positions['j'] - codon_positions[
                'v'] + 3  #tryp_position_in_joined_seq - self.cyst_position + 3
        self.info[query_name]['cyst_position'] = codon_positions['v']
        self.info[query_name]['tryp_position'] = codon_positions['j']
        if self.info[query_name]['cyst_position'] < 0 or self.info[query_name][
                'cyst_position'] >= len(query_seq):
            raise Exception('cpos %d invalid for %s (%s)' %
                            (self.info[query_name]['cyst_position'],
                             query_name, query_seq))
        if self.info[query_name]['tryp_position'] < 0 or self.info[query_name][
                'tryp_position'] >= len(query_seq):
            raise Exception('tpos %d invalid for %s (%s)' %
                            (self.info[query_name]['tryp_position'],
                             query_name, query_seq))

        # erosion, insertion, mutation info for best match
        self.info[query_name]['v_5p_del'] = all_germline_bounds[best['v']][0]
        self.info[query_name]['v_3p_del'] = len(
            self.germline_seqs['v'][best['v']]) - all_germline_bounds[
                best['v']][1]  # len(germline v) - gl_match_end
        self.info[query_name]['d_5p_del'] = all_germline_bounds[best['d']][0]
        self.info[query_name]['d_3p_del'] = len(self.germline_seqs['d'][
            best['d']]) - all_germline_bounds[best['d']][1]
        self.info[query_name]['j_5p_del'] = all_germline_bounds[best['j']][0]
        self.info[query_name]['j_3p_del'] = len(self.germline_seqs['j'][
            best['j']]) - all_germline_bounds[best['j']][1]

        self.info[query_name][
            'fv_insertion'] = query_seq[:all_query_bounds[best['v']][0]]
        self.info[query_name]['vd_insertion'] = query_seq[
            all_query_bounds[best['v']][1]:all_query_bounds[best['d']][0]]
        self.info[query_name]['dj_insertion'] = query_seq[
            all_query_bounds[best['d']][1]:all_query_bounds[best['j']][0]]
        self.info[query_name]['jf_insertion'] = query_seq[
            all_query_bounds[best['j']][1]:]

        for region in utils.regions:
            self.info[query_name][region + '_gene'] = best[region]
            self.info[query_name][region + '_gl_seq'] = best[region +
                                                             '_gl_seq']
            self.info[query_name][region + '_qr_seq'] = best[region +
                                                             '_qr_seq']
            self.info['all_best_matches'].add(best[region])

        self.info[query_name][
            'seq'] = query_seq  # NOTE this is the seq output by vdjalign, i.e. if we reversed any indels it is the reversed sequence
        if self.debug:
            if not self.args.is_data:
                utils.print_reco_event(
                    self.germline_seqs,
                    self.reco_info[query_name],
                    extra_str='      ',
                    label='true:',
                    indelfo=self.reco_info[query_name]['indels'])
            utils.print_reco_event(self.germline_seqs,
                                   self.info[query_name],
                                   extra_str='      ',
                                   label='inferred:',
                                   indelfo=self.info['indels'].get(
                                       query_name, None))

        if self.pcounter is not None:
            self.pcounter.increment_reco_params(self.info[query_name])
            self.pcounter.increment_mutation_params(self.info[query_name])
        if self.true_pcounter is not None:
            self.true_pcounter.increment_reco_params(
                self.reco_info[query_name])
            self.true_pcounter.increment_mutation_params(
                self.reco_info[query_name])
        if self.perfplotter is not None:
            self.perfplotter.evaluate(
                self.reco_info[query_name],
                self.info[query_name])  #, subtract_unphysical_erosions=True)

        self.remaining_queries.remove(query_name)

    # ----------------------------------------------------------------------------------------
    def summarize_query(self, query_name, query_seq, all_match_names,
                        all_query_bounds, all_germline_bounds, warnings,
                        first_match_query_bounds):
        if self.debug:
            print '%s' % query_name

        best, match_names, n_matches = {}, {}, {}
        n_used = {'v': 0, 'd': 0, 'j': 0}
        k_v_min, k_d_min = 999, 999
        k_v_max, k_d_max = 0, 0
        for region in utils.regions:
            all_match_names[region] = sorted(all_match_names[region],
                                             reverse=True)
            match_names[region] = []
        codon_positions = {
            'v': -1,
            'd': -1,
            'j': -1
        }  # conserved codon positions (v:cysteine, d:dummy, j:tryptophan)
        for region in utils.regions:
            n_matches[region] = len(all_match_names[region])
            n_skipped = 0
            for score, gene in all_match_names[region]:
                glbounds = all_germline_bounds[gene]
                qrbounds = all_query_bounds[gene]
                assert qrbounds[1] <= len(
                    query_seq
                )  # NOTE I'm putting these up avove as well (in process_query), so in time I should remove them from here
                assert glbounds[1] <= len(self.germline_seqs[region][gene])
                assert qrbounds[0] >= 0
                assert glbounds[0] >= 0
                glmatchseq = self.germline_seqs[region][gene][
                    glbounds[0]:glbounds[1]]

                # TODO since I'm no longer skipping the genes after the first <args.n_max_per_region>, the OR of k-space below is overly conservative

                # only use a specified set of genes
                if self.args.only_genes is not None and gene not in self.args.only_genes:
                    n_skipped += 1
                    continue

                # add match to the list
                n_used[region] += 1
                match_names[region].append(gene)

                self.print_match(region,
                                 gene,
                                 query_seq,
                                 score,
                                 glbounds,
                                 qrbounds,
                                 -1,
                                 warnings,
                                 skipping=False)

                # if the germline match and the query match aren't the same length, s-w likely added an insert, which we shouldn't get since the gap-open penalty is jacked up so high
                if len(glmatchseq) != len(
                        query_seq[qrbounds[0]:qrbounds[1]]
                ):  # neurotic double check (um, I think) EDIT hey this totally saved my ass
                    print 'ERROR %d not same length' % query_name
                    print glmatchseq, glbounds[0], glbounds[1]
                    print query_seq[qrbounds[0]:qrbounds[1]]
                    assert False

                if region == 'v':
                    this_k_v = all_query_bounds[gene][
                        1]  # NOTE even if the v match doesn't start at the left hand edge of the query sequence, we still measure k_v from there.
                    # In other words, sw doesn't tell the hmm about it
                    k_v_min = min(this_k_v, k_v_min)
                    k_v_max = max(this_k_v, k_v_max)
                if region == 'd':
                    this_k_d = all_query_bounds[gene][
                        1] - first_match_query_bounds[
                            1]  # end of d minus end of v
                    k_d_min = min(this_k_d, k_d_min)
                    k_d_max = max(this_k_d, k_d_max)

                # check consistency with best match (since the best match is excised in s-w code, and because ham is run with *one* k_v k_d set)
                if region not in best:
                    best[region] = gene
                    best[region + '_gl_seq'] = self.germline_seqs[region][
                        gene][glbounds[0]:glbounds[1]]
                    best[region +
                         '_qr_seq'] = query_seq[qrbounds[0]:qrbounds[1]]
                    best[region + '_score'] = score

            if self.debug and n_skipped > 0:
                print '%8s skipped %d %s genes' % ('', n_skipped, region)

        for region in utils.regions:
            if region not in best:
                print '      no', region, 'match found for', query_name  # NOTE if no d match found, we should really just assume entire d was eroded
                return

        # s-w allows d and j matches to overlap, so we need to apportion the disputed bases
        try:
            self.shift_overlapping_boundaries(all_query_bounds,
                                              all_germline_bounds, query_name,
                                              query_seq, best)
        except AssertionError:
            print '%s: apportionment failed' % query_name
            return

        # check for unproductive rearrangements
        for region in utils.regions:
            codon_positions[region] = utils.get_conserved_codon_position(
                self.cyst_positions,
                self.tryp_positions,
                region,
                best[region],
                all_germline_bounds[best[region]],
                all_query_bounds[best[region]],
                assert_on_fail=False
            )  # position in the query sequence, that is
        codons_ok = utils.check_both_conserved_codons(query_seq,
                                                      codon_positions['v'],
                                                      codon_positions['j'],
                                                      debug=self.debug,
                                                      extra_str='      ',
                                                      assert_on_fail=False)
        cdr3_length = codon_positions['j'] - codon_positions['v'] + 3
        in_frame_cdr3 = (cdr3_length % 3 == 0)
        if self.debug and not in_frame_cdr3:
            print '      out of frame cdr3: %d %% 3 = %d' % (cdr3_length,
                                                             cdr3_length % 3)
        no_stop_codon = utils.stop_codon_check(query_seq,
                                               codon_positions['v'],
                                               debug=self.debug)
        if not codons_ok or not in_frame_cdr3 or not no_stop_codon:
            if self.debug:
                print '       unproductive rearrangement in waterer codons_ok: %s   in_frame_cdr3: %s   no_stop_codon: %s' % (
                    codons_ok, in_frame_cdr3, no_stop_codon)
            if self.args.skip_unproductive:
                if self.debug:
                    print '            ...skipping'
                self.n_unproductive += 1
                self.info['skipped_unproductive_queries'].append(query_name)
                return

        # best k_v, k_d:
        k_v = all_query_bounds[best['v']][1]  # end of v match
        k_d = all_query_bounds[best['d']][1] - all_query_bounds[best['v']][
            1]  # end of d minus end of v

        if k_d_max < 5:  # since the s-w step matches to the longest possible j and then excises it, this sometimes gobbles up the d, resulting in a very short d alignment.
            if self.debug:
                print '  expanding k_d'
            k_d_max = max(8, k_d_max)

        if 'IGHJ4*' in best['j'] and self.germline_seqs['d'][best['d']][
                -5:] == 'ACTAC':  # the end of some d versions is the same as the start of some j versions, so the s-w frequently kicks out the 'wrong' alignment
            if self.debug:
                print '  doubly expanding k_d'
            if k_d_max - k_d_min < 8:
                k_d_min -= 5
                k_d_max += 2

        k_v_min = max(
            0, k_v_min - self.args.default_v_fuzz
        )  # ok, so I don't *actually* want it to be zero... oh, well
        k_v_max += self.args.default_v_fuzz
        k_d_min = max(1, k_d_min - self.args.default_d_fuzz)
        k_d_max += self.args.default_d_fuzz
        assert k_v_min > 0 and k_d_min > 0 and k_v_max > 0 and k_d_max > 0

        if self.debug:
            print '         k_v: %d [%d-%d)' % (k_v, k_v_min, k_v_max)
            print '         k_d: %d [%d-%d)' % (k_d, k_d_min, k_d_max)
            print '         used',
            for region in utils.regions:
                print ' %s: %d/%d' % (region, n_used[region],
                                      n_matches[region]),
            print ''

        kvals = {}
        kvals['v'] = {'best': k_v, 'min': k_v_min, 'max': k_v_max}
        kvals['d'] = {'best': k_d, 'min': k_d_min, 'max': k_d_max}
        self.add_to_info(query_name,
                         query_seq,
                         kvals,
                         match_names,
                         best,
                         all_germline_bounds,
                         all_query_bounds,
                         codon_positions=codon_positions)