'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 9)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 10)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 8)) PSET['sigma_factor'] = ps.ParameterRange([1.0]) PSET['simtime'] = 3000. PSET['tauMem_gaussian'] = True PSET['delay_gaussian'] = False PSET['J_gaussian'] = False PSET['t_ref_gaussian'] = False PSET['theta_gaussian'] = False # set up directory structure savefolder = os.path.join('./lfp_simulations_gaussian_taumem/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder)
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 37)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 37)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 37)) # set up directory structure savefolder = os.path.join('./lfp_simulations_grid/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder) if not os.path.isdir(parameterset_dest): os.mkdir(parameterset_dest) if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(nest_output): os.mkdir(nest_output) print('Start parameter iteration')
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 9)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 10)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 8)) PSET['delay'] = ps.ParameterRange([1.25, 1.35, 1.45, 1.55, 1.65, 1.75]) PSET['simtime'] = 3000. # set up directory structure savefolder = os.path.join('./lfp_simulations_varying_delays/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder) if not os.path.isdir(parameterset_dest): os.mkdir(parameterset_dest) if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(nest_output): os.mkdir(nest_output)
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange( [0.8, 0.9, 1.0, 1.1, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0]) PSET['g'] = ps.ParameterRange( [3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0]) PSET['J'] = ps.ParameterRange([0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4]) PSET['simtime'] = 30500. # set up directory structure savefolder = os.path.join('./heat_plot_simulations/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder) if not os.path.isdir(parameterset_dest): os.mkdir(parameterset_dest) if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(nest_output):
string = pickle.dumps(sorted_params) key = hashlib.md5(string).hexdigest() return key PSPACES = dict() # check scaling with MPI pool size PSPACES['MPI'] = ps.ParameterSpace(dict()) PSPACES['MPI'].update( dict( # Population sizes POP_SIZE_REF=[2400, 480], # allow different seeds for different network iterations GLOBALSEED=ps.ParameterRange([1234, 65135, 216579876]), # MPI pool size MPISIZE=ps.ParameterRange([120, 240, 480, 960, 1920, 2880]), # bool flag switching LFP calculations on or off (faster) COMPUTE_LFP=ps.ParameterRange([False, True]), # population size scaling (multiplied with values in # populationParams['POP_SIZE']): POPSCALING=ps.ParameterRange([1.]), # preserve expected synapse in-degree or total number of connections PRESERVE=ps.ParameterRange(['indegree']))) PSPACES['MPI5'] = ps.ParameterSpace(dict())
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 9)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 10)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 8)) PSET['tauMem'] = ps.ParameterRange( [5., 6., 7., 8., 9., 10., 11., 12., 13., 14.]) PSET['simtime'] = 3000. # set up directory structure savefolder = os.path.join('./lfp_simulations_varying_taumem/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder) if not os.path.isdir(parameterset_dest): os.mkdir(parameterset_dest) if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(nest_output):
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 9)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 10)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 8)) PSET['sigma_factor'] = ps.ParameterRange( [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]) PSET['simtime'] = 3000. PSET['tauMem_gaussian'] = False PSET['delay_gaussian'] = False PSET['J_gaussian'] = False PSET['t_ref_gaussian'] = True PSET['theta_gaussian'] = False # set up directory structure savefolder = os.path.join('./lfp_simulations_gaussian_t_ref/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder):
'''Sets up simulation directories and parameters for NEST simulations including LFP approximations''' import os import parameters as ps import numpy as np from nest_parameters import get_unique_id, NEST_PSET if __name__ == '__main__': ## Add the random varying parameters PSET = ps.ParameterSpace(NEST_PSET) PSET['eta'] = ps.ParameterRange(np.linspace(0.8, 4.0, 9)) PSET['g'] = ps.ParameterRange(np.linspace(3.5, 8.0, 10)) PSET['J'] = ps.ParameterRange(np.linspace(0.05, 0.4, 8)) PSET['theta'] = ps.ParameterRange(np.linspace(12, 28, 9)) PSET['simtime'] = 3000. # set up directory structure savefolder = os.path.join('./lfp_simulations_varying_theta/') parameterset_dest = os.path.join(savefolder, 'parameters') log_dir = os.path.join(savefolder, 'logs') nest_jobscript_dest = os.path.join(savefolder, 'nest_jobs') nest_output = os.path.join(savefolder, 'nest_output') if not os.path.isdir(savefolder): os.mkdir(savefolder) if not os.path.isdir(parameterset_dest): os.mkdir(parameterset_dest) if not os.path.isdir(log_dir): os.mkdir(log_dir) if not os.path.isdir(nest_output): os.mkdir(nest_output)