import numpy as np import data_creation as dc import parameters as prm import os # for running the code using a job array on cluster # parvalue is between 1 and 8 parvalue = int(os.environ['SGE_TASK_ID']) - 1 noise_mapping = (0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) sim_param = prm.system(alpha=1., beta=1., gamma=-1., gvec=np.full(prm.dim, noise_mapping[parvalue])) # create paths numpaths = 10 ic = np.random.uniform(low=-0.6, high=3.0, size=(numpaths, prm.dim)) it = np.zeros((numpaths)) euler_param = prm.euler_maruyama(numsteps=100000, savesteps=1000, ft=10., ic=ic, it=it, numpaths=numpaths) xout, tout, xout_without_noise = dc.createpaths(euler_param, sim_param) # save to file import pickle with open('./data/noise_' + str(parvalue) + '.pkl', 'wb') as f: pickle.dump([xout, tout, xout_without_noise, euler_param, sim_param], f)
import numpy as np import data_creation as dc import parameters as prm import os # for running the code using a job array on cluster # parvalue is between 1 and 8 parvalue = int(os.environ['SGE_TASK_ID']) - 1 noise_mapping = (0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) sim_param = prm.system(sigma=10.0, rho=28.0, beta=(8.0 / 3.0), gvec=np.full(prm.dim, noise_mapping[parvalue])) # create paths numpaths = 10 ic = np.random.uniform(low=-1.0, high=1.0, size=(numpaths, prm.dim)) it = np.zeros((numpaths)) euler_param = prm.euler_maruyama(numsteps=100000, savesteps=1000, ft=50., ic=ic, it=it, numpaths=numpaths) xout, tout, xout_without_noise = dc.createpaths(euler_param, sim_param) # save to file import pickle with open('./data/noise_' + str(parvalue) + '.pkl', 'wb') as f: pickle.dump([xout, tout, xout_without_noise, euler_param, sim_param], f)
import numpy as np import data_creation as dc import parameters as prm import os # for running the code using a job array on cluster # parvalue is between 1 and 8 parvalue = int(os.environ['SGE_TASK_ID']) - 1 noise_mapping = (0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) sim_param = prm.system(kvec=np.array([1.0, 0.7, 0.6, 1.2, 0.9]), mvec=np.array([0.2, 0.3, 0.5, 1.1]), gvec=np.full(prm.dim, noise_mapping[parvalue])) # create paths numpaths = 10 ic = np.random.uniform(low=-1.0, high=1.0, size=(numpaths, prm.dim)) it = np.zeros((numpaths)) euler_param = prm.euler_maruyama(numsteps=100000, savesteps=1000, ft=10., ic=ic, it=it, numpaths=numpaths) xout, tout, xout_without_noise = dc.createpaths(euler_param, sim_param) # save to file import pickle with open('./data/noise_' + str(parvalue) + '.pkl', 'wb') as f: pickle.dump([xout, tout, xout_without_noise, euler_param, sim_param], f)
import numpy as np import data_creation as dc import parameters as prm import os # for running the code using a job array on cluster # parvalue is between 1 and 8 parvalue = int(os.environ['SGE_TASK_ID']) - 1 noise_mapping = (0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001) sim_param = prm.system(alpha=1., beta=-1., gamma=0.5, delta=-0.3, omega=1.2, gvec=np.full(prm.dim, noise_mapping[parvalue])) # create paths numpaths = 10 ic = np.random.uniform(low=-2.0, high=2.0, size=(numpaths, prm.dim)) it = np.zeros((numpaths)) euler_param = prm.euler_maruyama(numsteps=100000, savesteps=1000, ft=10., ic=ic, it=it, numpaths=numpaths) xout, tout, xout_without_noise = dc.createpaths(euler_param, sim_param) # save to file import pickle
import numpy as np import data_creation as dc import parameters as prm """ Sample equation is the 2N coupled masses with spring with weights w1, ..., wN and spring constants k0, ..., kN: m_(2n) x''_(2n) = -k_(2n) (x_(2n) - x_(2n-1)) - k_(2n+1) (x_2n - x_(2n+1)) [Reference: http://www.people.fas.harvard.edu/~djmorin/waves/normalmodes.pdf] Converting this second order system of equations to a first order system of equations: dx_n = x_(n+1) Standard parameter values: """ sim_param = prm.system() # create paths """ The default parameters for Euler-Maruyama are: euler_param = prm.euler_maruyama(numsteps = 25000, savesteps = 100, ft = 10., ic, it, numpaths) """ #ic = np.array([[1., 0., 3.2, 0.], [0.5, 0., 0.2, 0.], [-1.2, 0., 0.34, 0.], [0.98, 0., -1.34, 0.], [0.5, 0., -1.5, 0.], [0.1, 0., 0.9, 0.]]) ic = np.random.random((6, 10)) it = np.zeros((ic.shape[0])) euler_param = prm.euler_maruyama(ic, it) xout, tout, xout_without_noise = dc.createpaths(euler_param, sim_param) # save to file import pickle with open('nem_6D.pkl', 'wb') as f: pickle.dump([xout, tout, xout_without_noise, euler_param, sim_param], f)