variant_pol_tag = ['TE', 'EE'] variants = variant_tag planck_highL_sets = [] planck_pol_sets = [] planck_vars = ['plikHM', 'CamSpecHM'] planck_ini = ['plik_rd12_HM_v22_%s.ini', 'nonclik_v10_7_%s.ini'] clean_ini = ['nonclik_v10_7_TT_clean.ini'] # planck_ini = ['plik_rd12_HM_v22_%s.ini', 'CAMspec_%s_clik14.ini'] planck_base = [[], []] for planck, ini, base in zip(planck_vars, planck_ini, planck_base): for name, var in zip(variant_tag, variants): planck_highL_sets.append( batchjob.dataSet([planck, name], base + [ini % var])) for var in variant_pol_tag: planck_pol_sets.append( batchjob.dataSet([planck, var], base + [ini % var])) baseTT = planck_highL_sets[0] baseTTTEEE = planck_highL_sets[1] WMAP9 = [[WMAP], ['WMAP.ini']] likechecks = [] newCovmats = False # Importance sampling settings
camspec_CS = ['nonclik.ini'] variant_tag = ['TT', 'TTTEEE'] variant_pol_tag = ['TE', 'EE'] variants = variant_tag planck_highL_sets = [] planck_pol_sets = [] planck_vars = ['plikHM', 'CamSpecHM'] planck_ini = ['plik_dx11dr2_HM_v18_%s.ini', 'CAMspec_%s.ini'] planck_base = [[], camspec_CS] for planck, ini, base in zip(planck_vars, planck_ini, planck_base): for name, var in zip(variant_tag, variants): planck_highL_sets.append( batchjob.dataSet([planck, name], base + [ini % var])) for var in variant_pol_tag: planck_pol_sets.append( batchjob.dataSet([planck, var], base + [ini % var])) baseTT = planck_highL_sets[0] WMAP9 = [[WMAP], ['WMAP.ini']] likechecks = [] likechecks.append( batchjob.dataSet(['CamSpecDS', 'TT'], camspec_detsets + ['CAMspec_TT.ini'])) likechecks.append( batchjob.dataSet(['plikDS', 'TT'], ['plik_dx11dr2_DS_v18_TT.ini'])) # likechecks.append(batchjob.dataSet(['Mspec', 'TT'], ['mspec_dx11d_HM_v1_TT.ini']))
# ini files you want to base each set of runs on defaults = ['common.ini'] importanceDefaults = ['importance_sampling.ini'] # set up list of groups of parameters and data sets groups = [] # make first group of runs (all parameter variations with all data combinations) g = batchjob.jobGroup('main') g.params = [[], ['mnu'], ['nnu']] g.datasets = [] # lists of dataset names to combine, with corresponding sets of inis to include g.datasets.append(batchjob.dataSet(['plikHM', 'TT', 'lowTEB'], ['plik_dx11dr2_HM_v18_TT.ini', 'lowTEB.ini'])) g.datasets.append(batchjob.dataSet(['plikHM', 'TT', 'lowTEB', 'lensing'], ['plik_dx11dr2_HM_v18_TT.ini', 'lowTEB.ini', 'lensing.ini'])) # add importance name tags, and list of specific .ini files to include (in batch1/) g.importanceRuns = [] g.importanceRuns.append([['BAO'], ['BAO.ini']]) groups.append(g) # ranges for parameters when they are varied (can delete params if you just want to use defaults) params = dict() params['w'] = '-0.99 -3. 1 0.02 0.02' params['wa'] = '0 -3 2 0.05 0.05' params['mnu'] = '0.02 0 5 0.1 0.03'
camspec_detsets = ['nonclik_detsets.ini'] camspec_CS = ['nonclik.ini'] variant_tag = ['TT', 'TTTEEE'] variant_pol_tag = ['TE', 'EE'] variants = variant_tag planck_highL_sets = [] planck_pol_sets = [] planck_vars = ['plikHM', 'CamSpecHM'] planck_ini = ['plik_dx11dr2_HM_v18_%s.ini', 'CAMspec_%s.ini'] planck_base = [[], camspec_CS] for planck, ini, base in zip(planck_vars, planck_ini, planck_base): for name, var in zip(variant_tag, variants): planck_highL_sets.append(batchjob.dataSet([planck, name], base + [ini % var])) for var in variant_pol_tag: planck_pol_sets.append(batchjob.dataSet([planck, var], base + [ini % var])) baseTT = planck_highL_sets[0] WMAP9 = [[WMAP], ['WMAP.ini']] likechecks = [] likechecks.append(batchjob.dataSet(['CamSpecDS', 'TT'], camspec_detsets + ['CAMspec_TT.ini'])) likechecks.append(batchjob.dataSet(['plikDS', 'TT'], ['plik_dx11dr2_DS_v18_TT.ini'])) # likechecks.append(batchjob.dataSet(['Mspec', 'TT'], ['mspec_dx11d_HM_v1_TT.ini'])) # likechecks.append(batchjob.dataSet(['cleanCMH', 'TT'], ['cleanCMH.ini'])) # likechecks.append(batchjob.dataSet(['plikLite', 'TT'], ['plik_lite_TT.ini'])) # likechecks.append(batchjob.dataSet(['plikLite', 'TTTEEE'], ['plik_lite_TTTEEE.ini']))
# ini files you want to base each set of runs on defaults = ['common.ini'] # set up list of groups of parameters and data sets groups = [] # make first group of runs (all parameter variations with all data combinations) g = batchjob.jobGroup('main') g.params = [['r']] # skip lensing for now as slow variants = [ 'fiducial', 'y1y2', '9bins', 'no217', 'relaxbetad', 'relaxalphad', 'sync000', 'sync100' ] g.datasets = [] for i, var in enumerate(variants): g.datasets.append( batchjob.dataSet(['BKPlanckonly', var], [{ 'root_dir': '' }, 'BKPlanck/BKPlanck_0%u_%s.ini' % (i + 1, var)])) # add importance name tags, and list of specific .ini files to include (in batch1/) g.importanceRuns = [] groups.append(g)
variant_tag = ['TT', 'TTTEEE'] variant_pol_tag = ['TE', 'EE'] variants = variant_tag planck_highL_sets = [] planck_pol_sets = [] planck_vars = ['plikHM', 'CamSpecHM'] planck_ini = ['plik_rd12_HM_v22_%s.ini', 'nonclik_v10_7_%s.ini'] clean_ini = ['nonclik_v10_7_TT_clean.ini'] # planck_ini = ['plik_rd12_HM_v22_%s.ini', 'CAMspec_%s_clik14.ini'] planck_base = [[], []] for planck, ini, base in zip(planck_vars, planck_ini, planck_base): for name, var in zip(variant_tag, variants): planck_highL_sets.append(batchjob.dataSet([planck, name], base + [ini % var])) for var in variant_pol_tag: planck_pol_sets.append(batchjob.dataSet([planck, var], base + [ini % var])) baseTT = planck_highL_sets[0] baseTTTEEE = planck_highL_sets[1] WMAP9 = [[WMAP], ['WMAP.ini']] likechecks = [] newCovmats = False # Importance sampling settings
# ini files you want to base each set of runs on defaults = ['common.ini'] importanceDefaults = ['importance_sampling.ini'] # set up list of groups of parameters and data sets groups = [] # make first group of runs (all parameter variations with all data combinations) g = batchjob.jobGroup('main') g.params = [[], ['Alens']] g.datasets = [] # lists of dataset names to combine, with corresponding sets of inis to include g.datasets.append(batchjob.dataSet(['CamSpec_v12_5_HM_cln','TT','tauP'],['camspec_v12_5_HM_cln_TT.ini','tauprior.ini'])) g.datasets.append(batchjob.dataSet(['CamSpec_v12_5_HM_cln','TTTEEE','tauP'],['camspec_v12_5_HM_cln_TTTEEE.ini','tauprior.ini'])) g.datasets.append(batchjob.dataSet(['CamSpec_v12_5_HM_cln','TE','tauP'],['camspec_v12_5_HM_cln_TE.ini','tauprior.ini'])) g.datasets.append(batchjob.dataSet(['CamSpec_v12_5_HM_cln','EE','tauP'],['camspec_v12_5_HM_cln_EE.ini','tauprior.ini'])) g.datasets.append(batchjob.dataSet(['CamSpec_v12_5_HM_cln','TEEE','tauP'],['camspec_v12_5_HM_cln_TEEE.ini','tauprior.ini'])) # add importance name tags, and list of specific .ini files to include (in batch1/) g.importanceRuns = [] g.importanceRuns.append([['BAO'], ['BAO.ini']]) groups.append(g) # ranges for parameters when they are varied (can delete params if you just want to use defaults) params = dict() params['w'] = '-0.99 -3. 1 0.02 0.02' params['wa'] = '0 -3 2 0.05 0.05'
ini_dir = 'batch2/' # directory to look for existing covariance matrices covmat = 'planck_covmats/BKPlanck.covmat' # ini files you want to base each set of runs on defaults = ['common.ini'] # set up list of groups of parameters and data sets groups = [] # make first group of runs (all parameter variations with all data combinations) g = batchjob.jobGroup('main') g.params = [['r']] # skip lensing for now as slow variants = ['fiducial', 'y1y2', '9bins', 'no217', 'relaxbetad', 'relaxalphad', 'sync000', 'sync100'] g.datasets = [] for i, var in enumerate(variants): g.datasets.append(batchjob.dataSet(['BKPlanckonly', var], [{'root_dir': ''}, 'BKPlanck/BKPlanck_0%u_%s.ini' % (i + 1, var)])) # add importance name tags, and list of specific .ini files to include (in batch1/) g.importanceRuns = [] groups.append(g)