예제 #1
0
    def getProbeData(self):
        """Returns probe-data from all readers. The returned datastructure has
            the following syntax.
            [
                {
                    "name"      : "<name>",
                    "headers"   : [ "foo", "time", "bar" ],
                    "data"      : [ [3, "2009-11-04", 1], [...], ...]
                },
                { ... }, ...
            ]
        """
        retVal = []
        for item in _DataProber.PipelineObjects:
            name = item["name"]
            probe = item["Probe"]
            probe.Source.Point1 = _DataProber.Widget.Point1WorldPosition
            probe.Source.Point2 = _DataProber.Widget.Point2WorldPosition
            print "Probing ", probe.Source.Point1, probe.Source.Point2
            simple.UpdatePipeline(time=_DataProber.View.ViewTime, proxy=probe)

            # fetch probe result from root node.
            do = simple.servermanager.Fetch(probe, 0)
            data = vtkWebUtilities.WriteAttributesToJavaScript(
                vtk.vtkDataObject.POINT, do)
            headers = vtkWebUtilities.WriteAttributeHeadersToJavaScript(
                vtk.vtkDataObject.POINT, do)
            # process the strings returned by vtkPVWebUtilities to generate
            # Python objects
            nan = "_nan_"
            data = eval(data)
            headers = eval(headers)
            retVal.append({"name": name, "headers": headers, "data": data})
        return retVal
예제 #2
0
    if options:
        # add coda about extracts generation.
        trace.append_separated(["",
            "if __name__ == '__main__':",
            "    # generate extracts",
            "    SaveExtracts(ExtractsOutputDirectory='%s')" % options.ExtractsOutputDirectory])
    del trace_config
    smtrace.stop_trace()
    #print (trace)
    return str(trace) if not raw else trace.raw_data()

if __name__ == "__main__":
    print ( "Running test")
    simple.Mandelbrot()
    simple.Show()
    simple.Hide()
    simple.Shrink().ShrinkFactor  = 0.4
    simple.UpdatePipeline()
    simple.Clip().ClipType.Normal[1] = 1

    rep = simple.Show()
    view = simple.Render()
    view.ViewSize=[500, 500]
    rep.SetScalarBarVisibility(view, True)
    simple.Render()
#    rep.SetScalarBarVisibility(view, False)

    print ("====================================================================")
    print (get_state())
예제 #3
0
파일: nekio.py 프로젝트: exabl/sandbox
 def apply(self):
     """Update pipeline with current timestep."""
     pv.UpdatePipeline(self.time)
예제 #4
0
def render_frames(
    scene,
    frames_dir=None,
    frame_window=None,
    render_missing_frames=False,
    save_state_to_file=None,
    no_render=False,
    show_preview=False,
    show_progress=False,
    job_id=None,
):
    # Validate scene
    if scene["View"]["ViewSize"][0] % 16 != 0:
        logger.warning(
            "The view width should be a multiple of 16 to be compatible with"
            " QuickTime.")
    if scene["View"]["ViewSize"][1] % 2 != 0:
        logger.warning(
            "The view height should be even to be compatible with QuickTime.")

    render_start_time = time.time()

    # Setup layout
    layout = pv.CreateLayout("Layout")

    # Setup view
    if "Background" in scene["View"]:
        bg_config = scene["View"]["Background"]
        del scene["View"]["Background"]
        if isinstance(bg_config, list):
            if isinstance(bg_config[0], list):
                assert len(bg_config) == 2, (
                    "When 'Background' is a list of colors, it must have 2"
                    " entries.")
                bg_config = dict(
                    BackgroundColorMode="Gradient",
                    Background=parse_as.color(bg_config[0]),
                    Background2=parse_as.color(bg_config[1]),
                )
            else:
                bg_config = dict(
                    BackgroundColorMode="Single Color",
                    Background=parse_as.color(bg_config),
                )
            bg_config["UseColorPaletteForBackground"] = 0
            scene["View"].update(bg_config)
            bg_config = None
    else:
        bg_config = None
    view = pv.CreateRenderView(**scene["View"])
    pv.AssignViewToLayout(view=view, layout=layout, hint=0)

    # Set spherical background texture
    if bg_config is not None:
        bg_config["BackgroundColorMode"] = "Texture"
        skybox_datasource = bg_config["Datasource"]
        del bg_config["Datasource"]
        background_texture = pvserver.rendering.ImageTexture(
            FileName=parse_as.path(scene["Datasources"][skybox_datasource]))
        background_sphere = pv.Sphere(Radius=bg_config["Radius"],
                                      ThetaResolution=100,
                                      PhiResolution=100)
        background_texture_map = pv.TextureMaptoSphere(Input=background_sphere)
        pv.Show(
            background_texture_map,
            view,
            Texture=background_texture,
            BackfaceRepresentation="Cull Frontface",
            Ambient=1.0,
        )

    # Load the waveform data file
    waveform_h5file, waveform_subfile = parse_as.file_and_subfile(
        scene["Datasources"]["Waveform"])
    waveform_data = WaveformDataReader(FileName=waveform_h5file,
                                       Subfile=waveform_subfile)
    pv.UpdatePipeline()

    # Generate volume data from the waveform. Also sets the available time range.
    # TODO: Pull KeepEveryNthTimestep out of datasource
    waveform_to_volume_configs = scene["WaveformToVolume"]
    if isinstance(waveform_to_volume_configs, dict):
        waveform_to_volume_configs = [{
            "Object": waveform_to_volume_configs,
        }]
        if "VolumeRepresentation" in scene:
            waveform_to_volume_configs[0]["VolumeRepresentation"] = scene[
                "VolumeRepresentation"]
    waveform_to_volume_objects = []
    for waveform_to_volume_config in waveform_to_volume_configs:
        volume_data = WaveformToVolume(
            WaveformData=waveform_data,
            SwshCacheDirectory=parse_as.path(
                scene["Datasources"]["SwshCache"]),
            **waveform_to_volume_config["Object"],
        )
        if "Modes" in waveform_to_volume_config["Object"]:
            volume_data.Modes = waveform_to_volume_config["Object"]["Modes"]
        if "Polarizations" in waveform_to_volume_config["Object"]:
            volume_data.Polarizations = waveform_to_volume_config["Object"][
                "Polarizations"]
        waveform_to_volume_objects.append(volume_data)

    # Compute timing and frames information
    time_range_in_M = (
        volume_data.TimestepValues[0],
        volume_data.TimestepValues[-1],
    )
    logger.debug(f"Full available data time range: {time_range_in_M} (in M)")
    if "FreezeTime" in scene["Animation"]:
        frozen_time = scene["Animation"]["FreezeTime"]
        logger.info(f"Freezing time at {frozen_time}.")
        view.ViewTime = frozen_time
        animation = None
    else:
        if "Crop" in scene["Animation"]:
            time_range_in_M = scene["Animation"]["Crop"]
            logger.debug(f"Cropping time range to {time_range_in_M} (in M).")
        animation_speed = scene["Animation"]["Speed"]
        frame_rate = scene["Animation"]["FrameRate"]
        num_frames = animate.num_frames(
            max_animation_length=time_range_in_M[1] - time_range_in_M[0],
            animation_speed=animation_speed,
            frame_rate=frame_rate,
        )
        animation_length_in_seconds = num_frames / frame_rate
        animation_length_in_M = animation_length_in_seconds * animation_speed
        time_per_frame_in_M = animation_length_in_M / num_frames
        logger.info(f"Rendering {animation_length_in_seconds:.2f}s movie with"
                    f" {num_frames} frames ({frame_rate} FPS or"
                    f" {animation_speed:.2e} M/s or"
                    f" {time_per_frame_in_M:.2e} M/frame)...")
        if frame_window is not None:
            animation_window_num_frames = frame_window[1] - frame_window[0]
            animation_window_time_range = (
                time_range_in_M[0] + frame_window[0] * time_per_frame_in_M,
                time_range_in_M[0] +
                (frame_window[1] - 1) * time_per_frame_in_M,
            )
            logger.info(
                f"Restricting rendering to {animation_window_num_frames} frames"
                f" (numbers {frame_window[0]} to {frame_window[1] - 1}).")
        else:
            animation_window_num_frames = num_frames
            animation_window_time_range = time_range_in_M
            frame_window = (0, num_frames)

        # Setup animation so that sources can retrieve the `UPDATE_TIME_STEP`
        animation = pv.GetAnimationScene()
        # animation.UpdateAnimationUsingDataTimeSteps()
        # Since the data can be evaluated at arbitrary times we define the time steps
        # here by setting the number of frames within the full range
        animation.PlayMode = "Sequence"
        animation.StartTime = animation_window_time_range[0]
        animation.EndTime = animation_window_time_range[1]
        animation.NumberOfFrames = animation_window_num_frames
        logger.debug(
            f"Animating from scene time {animation.StartTime} to"
            f" {animation.EndTime} in {animation.NumberOfFrames} frames.")

        def scene_time_from_real(real_time):
            return (real_time / animation_length_in_seconds *
                    animation_length_in_M)

        # For some reason the keyframe time for animations is expected to be within
        # (0, 1) so we need to transform back and forth from this "normalized" time
        def scene_time_from_normalized(normalized_time):
            return animation.StartTime + normalized_time * (
                animation.EndTime - animation.StartTime)

        def normalized_time_from_scene(scene_time):
            return (scene_time - animation.StartTime) / (animation.EndTime -
                                                         animation.StartTime)

        # Setup progress measuring already here so volume data computing for
        # initial frame is measured
        if show_progress and not no_render:
            logging.getLogger().handlers = [TqdmLoggingHandler()]
            animation_window_frame_range = tqdm.trange(
                animation_window_num_frames,
                desc="Rendering",
                unit="frame",
                miniters=1,
                position=job_id,
            )
        else:
            animation_window_frame_range = range(animation_window_num_frames)

        # Set the initial time step
        animation.GoToFirst()

    # Display the volume data. This will trigger computing the volume data at the
    # current time step.
    for volume_data, waveform_to_volume_config in zip(
            waveform_to_volume_objects, waveform_to_volume_configs):
        vol_repr = (waveform_to_volume_config["VolumeRepresentation"]
                    if "VolumeRepresentation" in waveform_to_volume_config else
                    {})
        volume_color_by = config_color.extract_color_by(vol_repr)
        if (vol_repr["VolumeRenderingMode"] == "GPU Based"
                and len(volume_color_by) > 2):
            logger.warning(
                "The 'GPU Based' volume renderer doesn't support multiple"
                " components.")
        volume = pv.Show(volume_data, view, **vol_repr)
        pv.ColorBy(volume, value=volume_color_by)

    if "Slices" in scene:
        for slice_config in scene["Slices"]:
            slice_obj_config = slice_config.get("Object", {})
            slice = pv.Slice(Input=volume_data)
            slice.SliceType = "Plane"
            slice.SliceOffsetValues = [0.0]
            slice.SliceType.Origin = slice_obj_config.get(
                "Origin", [0.0, 0.0, -0.3])
            slice.SliceType.Normal = slice_obj_config.get(
                "Normal", [0.0, 0.0, 1.0])
            slice_rep = pv.Show(slice, view,
                                **slice_config.get("Representation", {}))
            pv.ColorBy(slice_rep, value=volume_color_by)

    # Display the time
    if "TimeAnnotation" in scene:
        time_annotation = pv.AnnotateTimeFilter(volume_data,
                                                **scene["TimeAnnotation"])
        pv.Show(time_annotation, view, **scene["TimeAnnotationRepresentation"])

    # Add spheres
    if "Spheres" in scene:
        for sphere_config in scene["Spheres"]:
            sphere = pv.Sphere(**sphere_config["Object"])
            pv.Show(sphere, view, **sphere_config["Representation"])

    # Add trajectories and objects that follow them
    if "Trajectories" in scene:
        for trajectory_config in scene["Trajectories"]:
            trajectory_name = trajectory_config["Name"]
            radial_scale = (trajectory_config["RadialScale"]
                            if "RadialScale" in trajectory_config else 1.0)
            # Load the trajectory data
            traj_data_reader = TrajectoryDataReader(
                RadialScale=radial_scale,
                **scene["Datasources"]["Trajectories"][trajectory_name],
            )
            # Make sure the data is loaded so we can retrieve timesteps.
            # TODO: This should be fixed in `TrajectoryDataReader` by
            # communicating time range info down the pipeline, but we had issues
            # with that (see also `WaveformDataReader`).
            traj_data_reader.UpdatePipeline()
            if "Objects" in trajectory_config:
                with animate.restore_animation_state(animation):
                    follow_traj = FollowTrajectory(
                        TrajectoryData=traj_data_reader)
                for traj_obj_config in trajectory_config["Objects"]:
                    for traj_obj_key in traj_obj_config:
                        if traj_obj_key in [
                                "Representation",
                                "Visibility",
                                "TimeShift",
                                "Glyph",
                        ]:
                            continue
                        traj_obj_type = getattr(pv, traj_obj_key)
                        traj_obj_glyph = traj_obj_type(
                            **traj_obj_config[traj_obj_key])
                    follow_traj.UpdatePipeline()
                    traj_obj = pv.Glyph(Input=follow_traj,
                                        GlyphType=traj_obj_glyph)
                    # Can't set this in the constructor for some reason
                    traj_obj.ScaleFactor = 1.0
                    for glyph_property in (traj_obj_config["Glyph"] if "Glyph"
                                           in traj_obj_config else []):
                        setattr(
                            traj_obj,
                            glyph_property,
                            traj_obj_config["Glyph"][glyph_property],
                        )
                    traj_obj.UpdatePipeline()
                    if "TimeShift" in traj_obj_config:
                        traj_obj = animate.apply_time_shift(
                            traj_obj, traj_obj_config["TimeShift"])
                    pv.Show(traj_obj, view,
                            **traj_obj_config["Representation"])
                    if "Visibility" in traj_obj_config:
                        animate.apply_visibility(
                            traj_obj,
                            traj_obj_config["Visibility"],
                            normalized_time_from_scene,
                            scene_time_from_real,
                        )
            if "Tail" in trajectory_config:
                with animate.restore_animation_state(animation):
                    traj_tail = TrajectoryTail(TrajectoryData=traj_data_reader)
                if "TimeShift" in trajectory_config:
                    traj_tail = animate.apply_time_shift(
                        traj_tail, trajectory_config["TimeShift"])
                tail_config = trajectory_config["Tail"]
                traj_color_by = config_color.extract_color_by(tail_config)
                if "Visibility" in tail_config:
                    tail_visibility_config = tail_config["Visibility"]
                    del tail_config["Visibility"]
                else:
                    tail_visibility_config = None
                tail_rep = pv.Show(traj_tail, view, **tail_config)
                pv.ColorBy(tail_rep, value=traj_color_by)
                if tail_visibility_config is not None:
                    animate.apply_visibility(
                        traj_tail,
                        tail_visibility_config,
                        normalized_time_from_scene=normalized_time_from_scene,
                        scene_time_from_real=scene_time_from_real,
                    )
            if "Move" in trajectory_config:
                move_config = trajectory_config["Move"]
                logger.debug(
                    f"Animating '{move_config['guiName']}' along trajectory.")
                with h5py.File(trajectory_file, "r") as traj_data_file:
                    trajectory_data = np.array(
                        traj_data_file[trajectory_subfile])
                if radial_scale != 1.0:
                    trajectory_data[:, 1:] *= radial_scale
                logger.debug(f"Trajectory data shape: {trajectory_data.shape}")
                animate.follow_path(
                    gui_name=move_config["guiName"],
                    trajectory_data=trajectory_data,
                    num_keyframes=move_config["NumKeyframes"],
                    scene_time_range=time_range_in_M,
                    normalized_time_from_scene=normalized_time_from_scene,
                )

    # Add non-spherical horizon shapes (instead of spherical objects following
    # trajectories)
    if "Horizons" in scene:
        for horizon_config in scene["Horizons"]:
            with animate.restore_animation_state(animation):
                horizon = pv.PVDReader(FileName=scene["Datasources"]
                                       ["Horizons"][horizon_config["Name"]])
                if horizon_config.get("InterpolateTime", False):
                    horizon = pv.TemporalInterpolator(
                        Input=horizon, DiscreteTimeStepInterval=0)
            if "TimeShift" in horizon_config:
                horizon = animate.apply_time_shift(horizon,
                                                   horizon_config["TimeShift"],
                                                   animation)
            # Try to make horizon surfaces smooth. At low angular resoluton
            # they still show artifacts, so perhaps more can be done.
            horizon = pv.ExtractSurface(Input=horizon)
            horizon = pv.GenerateSurfaceNormals(Input=horizon)
            horizon_rep_config = horizon_config.get("Representation", {})
            if "Representation" not in horizon_rep_config:
                horizon_rep_config["Representation"] = "Surface"
            if "AmbientColor" not in horizon_rep_config:
                horizon_rep_config["AmbientColor"] = [0.0, 0.0, 0.0]
            if "DiffuseColor" not in horizon_rep_config:
                horizon_rep_config["DiffuseColor"] = [0.0, 0.0, 0.0]
            if "Specular" not in horizon_rep_config:
                horizon_rep_config["Specular"] = 0.2
            if "SpecularPower" not in horizon_rep_config:
                horizon_rep_config["SpecularPower"] = 10
            if "SpecularColor" not in horizon_rep_config:
                horizon_rep_config["SpecularColor"] = [1.0, 1.0, 1.0]
            if "ColorBy" in horizon_rep_config:
                horizon_color_by = config_color.extract_color_by(
                    horizon_rep_config)
            else:
                horizon_color_by = None
            horizon_rep = pv.Show(horizon, view, **horizon_rep_config)
            if horizon_color_by is not None:
                pv.ColorBy(horizon_rep, value=horizon_color_by)
            # Animate visibility
            if "Visibility" in horizon_config:
                animate.apply_visibility(
                    horizon,
                    horizon_config["Visibility"],
                    normalized_time_from_scene=normalized_time_from_scene,
                    scene_time_from_real=scene_time_from_real,
                )
            if "Contours" in horizon_config:
                for contour_config in horizon_config["Contours"]:
                    contour = pv.Contour(Input=horizon,
                                         **contour_config["Object"])
                    contour_rep = pv.Show(contour, view,
                                          **contour_config["Representation"])
                    pv.ColorBy(contour_rep, None)
                    if "Visibility" in horizon_config:
                        animate.apply_visibility(
                            contour,
                            horizon_config["Visibility"],
                            normalized_time_from_scene=
                            normalized_time_from_scene,
                            scene_time_from_real=scene_time_from_real,
                        )

    # Configure transfer functions
    if "TransferFunctions" in scene:
        for tf_config in scene["TransferFunctions"]:
            colored_field = tf_config["Field"]
            transfer_fctn = pv.GetColorTransferFunction(colored_field)
            opacity_fctn = pv.GetOpacityTransferFunction(colored_field)
            tf.configure_transfer_function(transfer_fctn, opacity_fctn,
                                           tf_config["TransferFunction"])

    # Save state file before configuring camera keyframes.
    # TODO: Make camera keyframes work with statefile
    if save_state_to_file is not None:
        pv.SaveState(save_state_to_file + ".pvsm")

    # Camera shots
    # TODO: Make this work with freezing time while the camera is swinging
    if animation is None:
        for i, shot in enumerate(scene["CameraShots"]):
            if (i == len(scene["CameraShots"]) - 1 or
                (shot["Time"] if "Time" in shot else 0.0) >= view.ViewTime):
                camera_motion.apply(shot)
                break
    else:
        camera_motion.apply_swings(
            scene["CameraShots"],
            scene_time_range=time_range_in_M,
            scene_time_from_real=scene_time_from_real,
            normalized_time_from_scene=normalized_time_from_scene,
        )

    # Report time
    if animation is not None:
        report_time_cue = pv.PythonAnimationCue()
        report_time_cue.Script = """
def start_cue(self): pass

def tick(self):
    import paraview.simple as pv
    import logging
    logger = logging.getLogger('Animation')
    scene_time = pv.GetActiveView().ViewTime
    logger.info(f"Scene time: {scene_time}")

def end_cue(self): pass
"""
        animation.Cues.append(report_time_cue)

    if show_preview and animation is not None:
        animation.PlayMode = "Real Time"
        animation.Duration = 10
        animation.Play()
        animation.PlayMode = "Sequence"

    if no_render:
        logger.info("No rendering requested. Total time:"
                    f" {time.time() - render_start_time:.2f}s")
        return

    if frames_dir is None:
        raise RuntimeError("Trying to render but `frames_dir` is not set.")
    if os.path.exists(frames_dir):
        logger.warning(
            f"Output directory '{frames_dir}' exists, files may be overwritten."
        )
    else:
        os.makedirs(frames_dir)

    if animation is None:
        pv.Render()
        pv.SaveScreenshot(os.path.join(frames_dir, "frame.png"))
    else:
        # Iterate over frames manually to support filling in missing frames.
        # If `pv.SaveAnimation` would support that, here's how it could be
        # invoked:
        # pv.SaveAnimation(
        #     os.path.join(frames_dir, 'frame.png'),
        #     view,
        #     animation,
        #     FrameWindow=frame_window,
        #     SuffixFormat='.%06d')
        # Note that `FrameWindow` appears to be buggy, so we set up the
        # `animation` according to the `frame_window` above so the frame files
        # are numberd correctly.
        for animation_window_frame_i in animation_window_frame_range:
            frame_i = frame_window[0] + animation_window_frame_i
            frame_file = os.path.join(frames_dir, f"frame.{frame_i:06d}.png")
            if render_missing_frames and os.path.exists(frame_file):
                continue
            logger.debug(f"Rendering frame {frame_i}...")
            animation.AnimationTime = (
                animation.StartTime +
                time_per_frame_in_M * animation_window_frame_i)
            pv.Render()
            pv.SaveScreenshot(frame_file)
            logger.info(f"Rendered frame {frame_i}.")

    logger.info(
        f"Rendering done. Total time: {time.time() - render_start_time:.2f}s")
예제 #5
0
composite_class = info.GetCompositeDataClassName()
if composite_class is None or not composite_class == 'vtkMultiBlockDataSet':
    raise WrongInput(
        'Source produce wrong type of data. MultiBlockDataSet required.')

# make a filter to collect all well lines in order
# to workaround a bug that do not porduce selsection labels
# on composite datasets
merged = ps.ProgrammableFilter()
merged.Script = merge_groups_script
merged.OutputDataSetType = 0  # PolyData
merged.Input = source

# update pipeline in order to get total number of points
ps.SetActiveSource(merged)
ps.UpdatePipeline()

# make selection where to show labels
n_points = merged.GetDataInformation().DataInformation.GetNumberOfPoints()
selection = ps.IDSelectionSource()
IDs = []
for i in range(n_points):
    # select only non-head points
    IDs.append(0L)
    IDs.append(long(i))
selection.IDs = IDs
selection.FieldType = 1  # select point
merged.SetSelectionInput(0, selection, 0)

# get representation and select its selection properties
ps.SetActiveSource(merged)
예제 #6
0
def generateData(datasetPath, outputDir) :

    if not os.path.exists(outputDir):
        os.makedirs(outputDir)

    resolution = 500
    center_of_rotation = [0.0, 0.0, 0.0]
    rotation_axis = [0.0, 0.0, 1.0]
    distance = 45.0

    disk_out_refex2 = simple.ExodusIIReader(FileName=[datasetPath])
    disk_out_refex2.PointVariables = ['Temp', 'V', 'Pres', 'AsH3', 'GaMe3', 'CH4', 'H2']
    disk_out_refex2.NodeSetArrayStatus = []
    disk_out_refex2.SideSetArrayStatus = []
    disk_out_refex2.ElementBlocks = ['Unnamed block ID: 1 Type: HEX8']

    filters = []
    filters_description = []

    calculator1 = simple.Calculator(Input=disk_out_refex2)
    calculator1.ResultArrayName = 'Velocity'
    calculator1.Function = 'mag(V)'

    simple.UpdatePipeline()

    color_by = []

    #
    # COMPLAINT
    #
    # As a user of this system, I'd like not to have to specify that I need
    # 'nX', 'nY', and 'nZ' when I add a colorby of type "VALUE".  Instead,
    # I'd like it to figure out that I'm going to need normals for that kind
    # of rendering and add them for me.
    #
    color_type = [
        ('VALUE', "Velocity"),
        ('VALUE', "Pres"),
        ('VALUE', "Temp"),
        ('VALUE', "nX"),
        ('VALUE', "nY"),
        ('VALUE', "nZ")
    ]

    pdi = calculator1.GetPointDataInformation()

    #
    # COMPLAINT
    #
    # Ditto the above complaint here.
    #
    luts = {
        "Velocity": ["point", "Velocity", 0, pdi.GetArray("Velocity").GetRange()],
        "Pres": ["point", "Pres", 0, pdi.GetArray("Pres").GetRange()],
        "Temp": ["point", "Temp", 0, pdi.GetArray("Temp").GetRange()],
        "nX": ["point", "Normals", 0, (-1,1)],
        "nY": ["point", "Normals", 1, (-1,1)],
        "nZ": ["point", "Normals", 2, (-1,1)]
    }

    contour_values = [ 300.0, 600.0, 900.0 ]

    for iso_value in contour_values:
        contour = simple.Contour(
            Input=calculator1,
            PointMergeMethod="Uniform Binning",
            ContourBy = ['POINTS', 'Temp'],
            Isosurfaces = [iso_value],
            ComputeScalars = 1)

        # Add this isocontour to my list of filters
        filters.append( contour )
        color_by.append( color_type )
        filters_description.append( {'name': 'iso=%s' % str(iso_value), 'parent': "Contour by temperature"} )

    # create a new 'Stream Tracer'
    streamTracer1 = StreamTracer(Input=calculator1,
        SeedType='High Resolution Line Source')
    streamTracer1.Vectors = ['POINTS', 'V']
    streamTracer1.MaximumStreamlineLength = 20.15999984741211

    # init the 'High Resolution Line Source' selected for 'SeedType'
    streamTracer1.SeedType.Point1 = [-5.75, -5.75, -10.0]
    streamTracer1.SeedType.Point2 = [5.75, 5.75, 10.15999984741211]

    # create a new 'Tube'
    tube1 = Tube(Input=streamTracer1)
    tube1.Scalars = ['POINTS', 'Velocity']
    tube1.Vectors = ['POINTS', 'Normals']
    tube1.Radius = 0.10474160957336426

    #
    # COMPLAINT
    #
    # Here, because the "Normals" field of the tube filter is all funky
    # (directions seem to change at the seed points, when integration
    # proceeded in both directions), I actually needed to play around
    # with ParaView until I found a filter that would get me nice
    # looking normals.  Then, that filter didn't have a "Normals" field,
    # so I had to use a calculator to create it.  Not super nice from a
    # users perspective.
    #
    surfaceVectors1 = SurfaceVectors(Input=tube1)
    surfaceVectors1.SelectInputVectors = ['POINTS', 'TubeNormals']
    calculator2 = simple.Calculator(Input=surfaceVectors1)
    calculator2.ResultArrayName = 'Normals'
    calculator2.Function = 'TubeNormals'

    # Now add the stream tubes to the filters list
    filters.append(calculator2);
    color_by.append(color_type);
    filters_description.append({'name': 'Stream Tubes'})

    # create a new 'Clip'
    clip1 = Clip(Input=calculator1)
    clip1.ClipType = 'Plane'
    clip1.Value = 11.209410083552676
    clip1.InsideOut = 1

    # init the 'Plane' selected for 'ClipType'
    clip1.ClipType.Origin = [0.0, 0.0, 0.07999992370605469]
    clip1.ClipType.Normal = [0.7, 0.0, -0.4]

    #
    # COMPLAINT
    #
    # Here again, the output of the clip filter doesn't have a "Normals"
    # field on points, so I have to do some funky stuff to get what I
    # need.  It would be nice if this could be figured out for me
    # somehow.
    #
    extractSurface1 = ExtractSurface(Input=clip1)
    generateSurfaceNormals1 = GenerateSurfaceNormals(Input=extractSurface1)

    # Now add the first clip to the filters list
    filters.append(generateSurfaceNormals1);
    color_by.append(color_type);
    filters_description.append({'name': 'Clip One'})

    # create a new 'Clip'
    clip2 = Clip(Input=calculator1)
    clip2.ClipType = 'Plane'
    clip2.Value = 11.209410083552676
    clip2.InsideOut = 0

    # init the 'Plane' selected for 'ClipType'
    clip2.ClipType.Origin = [0.0, 0.0, 0.07999992370605469]
    clip2.ClipType.Normal = [0.7, 0.0, -0.4]

    #
    # COMPLAINT
    #
    # Ditto the above complaint here.
    #
    extractSurface2 = ExtractSurface(Input=clip2)
    generateSurfaceNormals2 = GenerateSurfaceNormals(Input=extractSurface2)

    # Now add the second clip to the filters list
    filters.append(generateSurfaceNormals2);
    color_by.append(color_type);
    filters_description.append({'name': 'Clip Two'})

    title = "Composite Dynamic Rendering - Disk Out Ref"
    description = "A sample dataset for dynamic rendering"
    analysis = wx.AnalysisManager(outputDir, title, description)

    id = 'composite'
    title = '3D composite'
    description = "contour set"
    analysis.register_analysis(id, title, description, '{theta}/{phi}/{filename}', wx.CompositeImageExporter.get_data_type()+"-light")
    fng = analysis.get_file_name_generator(id)

    camera_handler = wx.ThreeSixtyCameraHandler(
        fng,
        None,
        [ float(r) for r in range(0, 360, 30) ],
        [ float(r) for r in range(-60, 61, 60) ],
        center_of_rotation,
        rotation_axis,
        distance)

    exporter = wx.CompositeImageExporter(
        fng,
        filters,
        color_by,
        luts,
        camera_handler,
        [resolution,resolution],
        filters_description,
        0, 0, 'png')
    exporter.set_analysis(analysis)

    analysis.begin()
    exporter.UpdatePipeline(0)
    analysis.end()