from parinya import LINE import time import cv2 import numpy as np import os recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('trainer/classifier_face.xml') cascadePath = "Cascade/haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath) line = LINE('cdAJfHOi8LLFdXY9RtzEnLTO33cOid62cpvKr69PNDc') font = cv2.FONT_HERSHEY_SIMPLEX id = 0 names = ['None', 'Precha', 'Steve Job', 'Toey'] # Initialize and start realtime video capture camera = cv2.VideoCapture(0) camera.set(3, 640) # set video widht camera.set(4, 480) # set video height # Define min window size to be recognized as a face minW = 0.1 * camera.get(3) minH = 0.1 * camera.get(4) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') # กำหนด FourCC code out = cv2.VideoWriter('output.avi', fourcc, 5.0, (640, 480)) while (True): ret, img = camera.read()
# token id group myloan= "d3dVYwoTtmtGtLrDGXz491ZZlzogquSTAgVAa0bF7bI" from parinya import LINE line = LINE("d3dVYwoTtmtGtLrDGXz491ZZlzogquSTAgVAa0bF7bI") #line.sendtext("hello you") line.sendsticker(1, 1)
import requests import time from bs4 import BeautifulSoup from parinya import LINE line = LINE("d3dVYwoTtmtGtLrDGXz491ZZlzogquSTAgVAa0bF7bI") web = "https://www.huay.com/login" def send(): page = requests.get(web) page.encoding = 'utf-8' soup = BeautifulSoup(page.content, 'lxml') soup1 = soup.find('div', class_='card-body p-2') header = soup1.find(class_="text-danger").text header1 = header[:25] # จับยี่กี่รอบที่ .... soup2 = soup1.find_all('p', class_="number text-center m-0") soup3 = [] # สามตัวบนกับสองตัวล่าง for i in soup2: soup3.append(i.text) post = header1 + 'สามตัวบน ' + str(soup3[0]) + ' สองตัวล่าง ' + str( soup3[1]) print(post) line.sendtext(post) def check(): page = requests.get(web) page.encoding = 'utf-8' soup = BeautifulSoup(page.content, 'lxml') soup1 = soup.find('div', class_='card-body p-2') header = soup1.find(class_="text-danger").text
# Parameters df = df[df['Tag'].isin(tags)] df = df.reset_index(drop=True) return df # Hyperparameters url = 'https://xrpscan.com/account/rPFXvVo2fYXVPdV9gCHQouHsMgMhQ2aUwM' tags = ['2197236416', '102086525'] line = LINE('') # Algorithm driver = webdriver.Chrome() while True: try: df = get_data(driver, url, tags) if len(df) > 0: df_alert = pd.read_csv(r'.\log\alert_log.csv') df_alert['Date'] = pd.to_datetime(df_alert['Date'])
from parinya import LINE import time import cv2 import numpy as np import os recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read('trainer/classifier_face.xml') cascadePath = "Cascade/haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeClassifier(cascadePath); line = LINE('cdAJfHOi8LLFdXY9RtzEnLTO33cOid62cpvKr69PNDc') font = cv2.FONT_HERSHEY_SIMPLEX id = 0 names = ['None', 'Precha', 'Steve Job','Toey'] # Initialize and start realtime video capture camera = cv2.VideoCapture(0) camera.set(3, 640) # set video widht camera.set(4, 480) # set video height # Define min window size to be recognized as a face minW = 0.1*camera.get(3) minH = 0.1*camera.get(4) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') # กำหนด FourCC code out = cv2.VideoWriter('output.avi',fourcc, 5.0, (640,480)) while (True):
from parinya import LINE import datetime import csv import time as Time def make_csv(): with open('homeWork.csv', mode='w',encoding='utf-8',newline="") as cvs_file: csv_writer = csv.writer(cvs_file, delimiter=',') for i in range(len(data)): csv_writer.writerow(data[i]) line = LINE("4vV3B81Wt7BLoVytgmE2U4H7o8ZaYSFCx0LL1X9gQzJ") data = [] with open("homeWork.csv",mode="r",encoding='utf-8')as cvs_file: csv_reader = csv.reader(cvs_file, delimiter=',') for row in csv_reader: data.append(row) print(data) while True: now = datetime.datetime.now() day = str(now.day)+"/"+str(now.month)+"/"+str(now.year) time = str(now.now().hour)+":"+str(now.minute)+":"+str(now.second) if time != "6:0:0": for i in range(len(data)): subject =str("วิชา :"+data[i][0]) sent_time = str("วันที่ส่ง :"+data[i][1]) discrip =str("รายละเอียด :"+data[i][2]) text = day+"\n"+subject+"\n"+sent_time+"\n"+discrip line.sendtext(text) if str(data[i][1]) == str(day): del data[i]
import datetime import imutils import time import cv2 import os import datetime from pathlib import Path import arrow from flask_cors import CORS import base64 # filesPath = r"/var/www/html/image/" from parinya import YOLOv3 from parinya import LINE # criticalTime = arrow.now().shift(hours=+7).shift(days=-1) yolo = YOLOv3('coco.names','yolov3-tiny.cfg','yolov3-tiny.weights') line = LINE('IlxhXDiH1r1avlZkK8n5vMGpwsKZLkHee5gL3Im9yUm') base64_message = None # for item in Path(filesPath).glob('*'): # if item.is_file(): # print (str(item.absolute())) # itemTime = arrow.get(item.stat().st_mtime) # # if itemTime < criticalTime: # # #remove it # # pass # for filename in os.listdir(path): # print(filen ame) # # if os.stat(os.path.join(path, filename)).st_mtime < now - 7 * 86400:
from parinya import LINE import time import datetime import psycopg2 conn = psycopg2.connect( host="localhost", database="postgres", user="******", password="******") token_kmitl = 'SuWZzmcKMMH5RvFaglsCT8jWlIDEBltqjEwhNR7aepd' x = datetime.datetime.now() print(x.strftime("%x")) #ex. 12/31/18 print(x.strftime("%A")) #Weekday, full version Wednesday line = LINE(token_kmitl) msg ='''Morning report 3/19/2021 Name Arrival Status Tachrat 9.00 on time Kree 9.45 late ''' line.sendtext(msg) def line_guest(data): #มีรูปมีข้อความรับ 3 ค่า return def Morning_report(): #รับค่าดาต้าbaseรายวัน txt = "Morning report"+ x.strftime("%x") +"\n" +"Name Arrival Status" +"\n" # if Arrival > 9.30: # txt += " late" # elif Arrival < 9.30: # txt += " on time" # elif Arrival == null:
import tensorflow as tf import cv2 import multiprocessing as _mp from src.utils import load_graph, mario, detect_hands, predict from src.config import BLUE, RED, GREEN from parinya import LINE line = LINE('m9urUawCA7xtS43PmP6fKCmcmtFOPdiRpa7u9vSnxwb') tf.flags.DEFINE_integer("width", 640, "Screen width") tf.flags.DEFINE_integer("height", 480, "Screen height") tf.flags.DEFINE_float("threshold", 0.6, "Threshold for score") tf.flags.DEFINE_float("alpha", 0.3, "Transparent level") tf.flags.DEFINE_string("pre_trained_model_path", "src/pretrained_model.pb", "Path to pre-trained model") FLAGS = tf.flags.FLAGS def main(): graph, sess = load_graph(FLAGS.pre_trained_model_path) cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, FLAGS.width) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FLAGS.height) mp = _mp.get_context("spawn") v = mp.Value('i', 0) lock = mp.Lock() process = mp.Process(target=mario, args=(v, lock)) process.start() line.sendtext('Start Game') while True: key = cv2.waitKey(1) if key == ord("q"):