def call_wrap2(p, mmax=1e6, fc=0.05, x=None, y=None, err=None, fjac=None, more_out=False): #print mmax #print fc print p #print shape(p) nfake = 10 fall_cpp_wrapper(t0 = p[0], t1=p[0]+p[1], mmax = mmax, f_c=fc,\ mmin=10.**p[2], cmfslope = p[3], age_slope = p[4], \ grid_out = 'bast.dat') out, table = sfrl1_parse('bast.dat') qq = data2q(data_xind, data_yind, out, table) #print qq D, p = kstest(qq, 'uniform') print [1-p, D] print '------' status = 0 #return [status, (1-p)*ones(nfake)] if more_out == True: var_rat = std(qq)**2*12 mean_dat = mean(qq) return [D, p, var_rat, mean_dat] return [status, D*ones(nfake)]
fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ obs_err=0.01, f_c=fcs, grid_out="slug_comp_rere.dat",\ length=1e9,\ sfr_err=0.01, step=0.125/4, mmin=100, mmax=1e5) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs, grid_out="slug_comp2.dat",\ # length=1e8,\ # gamma_min = 2.438e19, sfr_err=0.01, step=0.125/4) #fcs2 = 1e6*np.log(1000)/(1e9-1e8) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ ## length=1e9,\ # sfr_err=0.01, step=0.125/4) out,table = p.sfrl1_parse('slug_comp_rere.dat') #out2,table2 = p.sfrl1_parse('slug_comp_rere.dat') #get names of tags #out.dtype.names sfrs = out.sfr_x x = out.x #get the sfr closest to \log sfr = -2 for i in xrange(3): index = np.argmin(abs(out.sfr_x -sfr[i])) this_pdf = table[index] #this_pdf2 = table2[index] print sfrs[index] # plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf2), lw=3, color=(1.,0.5,0.5), label='Uncorrected') plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf), lw=3, color='blue', label="CLOC")
(0.14, -9.7),\ (0.24, -11.0),\ (0.52, -10.1),\ (0.63, -11.9),\ (2.7, -13.0),\ (0.78, -11.8),\ (0.18, -9.1),\ (0.077, -9.7),\ (0.2,-11.3),\ (0.78, -11.2),\ (0.31, -10.9),\ (0.054,-14.0)) log_sfr = array([log10(data[i][0]) for i in xrange(len(data))] ) lnMV = mv2ln(array([data[i][1] for i in xrange(len(data))] )) out, table = sfrl1_parse('grid.dat') #data_xind = array([min(enumerate(abs(log_sfr[i] - out.sfr_x)), key=itemgetter(1))[0] \ # for i in xrange(len(log_sfr)]) #data_yind = array([min(enumerate(abs(lnMV[i] - out.x)), key=itemgetter(1))[0] \ # for i in xrange(len(MV)]) data_xind = array( [argmin(abs(log_sfr[i] - out.sfr_x)) for i in xrange(len(log_sfr))]) #data_yind = array( [argmin(abs(lnMV[i] - out.x)) for i in xrange(len(log_sfr))]) data_yind = lnMV def data2q(dat_sfr_ind, dat_mv_ind, tab_out, tab_tab): '''use data and model to compute quantile plot''' q = zeros(len(dat_mv_ind))
#fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ # length=1e8,\ # gamma_min = 2.438e19, sfr_err=0.01, step=0.125/4) fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ obs_err=0.01, f_c=fcs, grid_out="slug_comp_cut.dat",\ length=1e9,\ sfr_err=0.01, step=0.125/4, mmax=1e9, mmin=100) #fcs2 = 1e6*np.log(1000)/(1e9-1e8) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ ## length=1e9,\ # sfr_err=0.01, step=0.125/4) out, table = p.sfrl1_parse('slug_comp_cut.dat') #out2,table2 = p.sfrl1_parse('slug_comp2.dat') #get names of tags #out.dtype.names sfrs = out.sfr_x x = out.x #get the sfr closest to \log sfr = -2 for i in xrange(3): index = np.argmin(abs(out.sfr_x - sfr[i])) this_pdf = table[index] #this_pdf2 = table2[index] print sfrs[index] plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf),
#fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ # length=1e8,\ # gamma_min = 2.438e19, sfr_err=0.01, step=0.125/4) fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ obs_err=0.01, f_c=fcs, grid_out="slug_comp_cut.dat",\ length=1e9,\ sfr_err=0.01, step=0.125/4, mmax=1e9, mmin=100) #fcs2 = 1e6*np.log(1000)/(1e9-1e8) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ ## length=1e9,\ # sfr_err=0.01, step=0.125/4) out,table = p.sfrl1_parse('slug_comp_cut.dat') #out2,table2 = p.sfrl1_parse('slug_comp2.dat') #get names of tags #out.dtype.names sfrs = out.sfr_x x = out.x #get the sfr closest to \log sfr = -2 for i in xrange(3): index = np.argmin(abs(out.sfr_x -sfr[i])) this_pdf = table[index] #this_pdf2 = table2[index] print sfrs[index] plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf), lw=3, color='blue', label='CLOC') #plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf), lw=3, color='blue', label="Corrected")
fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ obs_err=0.01, f_c=fcs, grid_out="slug_comp_rere.dat",\ length=1e9,\ sfr_err=0.01, step=0.125/4, mmin=100, mmax=1e5) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs, grid_out="slug_comp2.dat",\ # length=1e8,\ # gamma_min = 2.438e19, sfr_err=0.01, step=0.125/4) #fcs2 = 1e6*np.log(1000)/(1e9-1e8) #fcw.fall_cpp_wrapper(t0=0, t1=0.01, age_slope=-0.99,\ # obs_err=0.01, f_c=fcs2, grid_out="slug_comp.dat",\ ## length=1e9,\ # sfr_err=0.01, step=0.125/4) out, table = p.sfrl1_parse('slug_comp_rere.dat') #out2,table2 = p.sfrl1_parse('slug_comp_rere.dat') #get names of tags #out.dtype.names sfrs = out.sfr_x x = out.x #get the sfr closest to \log sfr = -2 for i in xrange(3): index = np.argmin(abs(out.sfr_x - sfr[i])) this_pdf = table[index] #this_pdf2 = table2[index] print sfrs[index] # plt.plot(p.ln2mv(x), p.ln2mvpdf(this_pdf2), lw=3, color=(1.,0.5,0.5), label='Uncorrected') plt.plot(p.ln2mv(x),