예제 #1
0
def train_model(modeltype, delta):

    assert modeltype in ["gated_recurrent", "lstm_recurrent"]
    print "Begin Training"

    df_imdb_reviews = pd.read_csv('../data/imdb_review_data.tsv', escapechar='\\', delimiter='\t')

    X = clean(df_imdb_reviews['review'].values)
    y = df_imdb_reviews['sentiment'].values

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
    print "Tokenize"

    tokenizer = Tokenizer(min_df=10, max_features=100000)
    X_train = tokenizer.fit_transform(X_train)
    X_train = [[float(x) for x in  y] for y in X_train]
    X_test = tokenizer.transform(X_test)
    X_test = [[float(x) for x in  y] for y in X_test]

    print "Number of featers: {}".format(tokenizer.n_features)

    print "Training model"

    if modeltype == "gated_recurrent":
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                           init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            LstmRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                          init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    # bce is classification loss for binary classification and sigmoid output
    model = RNN(layers=layers, cost='bce', updater=Adadelta, (lr=delta))
    model.fit(X_train, y_train, n_epochs=20)

    with open('../data/{}_tokenizer_delta_{}_pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        vectorizer = pickle.dump(tokenizer, f)
    with open('../data/{}_model_delta_{}._pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        model = pickle.dump(model, f)

    try:
        y_pred_te = model.predict(X_test).flatten() >= 0.5
        y_pred_tr = model.predict(X_train).flatten() >= 0.5
        print 'Test Accuracy: {}'.format(accuracy_score(y_test,y_pred_te))
        print 'Test Precision: {}'.format(precision_score(y_test,y_pred_te))
        print 'Test Recall: {}'.format(recall_score(y_test,y_pred_te))
        print 'Train Accuracy: {}'.format(accuracy_score(y_train,y_pred_tr))
        print 'Train Precision: {}'.format(precision_score(y_train,y_pred_tr))
        print 'Train Recall: {}'.format(recall_score(y_train,y_pred_tr))

    except:
        print "Unable to perform metrics"

    return tokenizer, model
예제 #2
0
trX, teX, trY, teY = load_gender_data(
    ntrain=10000)  #Can increase up to 250K or so

tokenizer = Tokenizer(min_df=10, max_features=50000)
print trX[1:2]  #see a blog example
trX = tokenizer.fit_transform(trX)
teX = tokenizer.transform(teX)
print tokenizer.inverse_transform(trX[1:2])  #see what words are kept
print tokenizer.n_features

layers = [
    Embedding(size=128, n_features=tokenizer.n_features),
    GatedRecurrent(size=256,
                   activation='tanh',
                   gate_activation='steeper_sigmoid',
                   init='orthogonal',
                   seq_output=False),
    Dense(size=1, activation='sigmoid',
          init='orthogonal')  #sigmoid for binary classification
]

model = RNN(
    layers=layers, cost='bce'
)  #bce is classification loss for binary classification and sigmoid output
for i in range(2):
    model.fit(trX, trY, n_epochs=1)
    tr_preds = model.predict(trX[:len(teY)])
    te_preds = model.predict(teX)

    tr_acc = metrics.accuracy_score(trY[:len(teY)], tr_preds > 0.5)
예제 #3
0
#################
# training data have to be lemmatized using Morphodita !!!!!!!!!
#################
trX, teX, trY, teY = load_data(ntrain=9000, ntest=1000)
print len(trX), len(trY), len(teX), len(teY)

tokenizer = Tokenizer(min_df=10, max_features=50000)
trX = tokenizer.fit_transform(trX)
pickle.dump(tokenizer, open('tokenizer.pkl', 'wb'))
print "number of tokens:" + str(len(trX))
teX = tokenizer.transform(teX)
print "number of feathures:" + str(tokenizer.n_features)

layers = [
    Embedding(size=256, n_features=tokenizer.n_features),
    GatedRecurrent(size=725),
    Dense(size=10, activation='softmax')
]

model = RNN(layers=layers, cost='cce')
model.fit(trX, trY, n_epochs=10)
save(model, 'modelEcho.pkl')

tr_preds = model.predict(trX)
te_preds = model.predict(teX)

data = pd.DataFrame(trY)
data.to_csv('data/trY.vec')

data = pd.DataFrame(tr_preds)
data.to_csv('data/tr_preds.vec')
예제 #4
0
import numpy as np

from passage.models import RNN
from passage.updates import NAG, Regularizer
from passage.layers import Generic, GatedRecurrent, Dense
from passage.utils import load, save

from load import load_mnist

trX, teX, trY, teY = load_mnist()

#Use generic layer - RNN processes a size 28 vector at a time scanning from left to right
layers = [
    Generic(size=28),
    GatedRecurrent(size=512, p_drop=0.2),
    Dense(size=10, activation='softmax', p_drop=0.5)
]

#A bit of l2 helps with generalization, higher momentum helps convergence
updater = NAG(momentum=0.95, regularizer=Regularizer(l2=1e-4))

#Linear iterator for real valued data, cce cost for softmax
model = RNN(layers=layers, updater=updater, iterator='linear', cost='cce')
model.fit(trX, trY, n_epochs=20)

tr_preds = model.predict(trX[:len(teY)])
te_preds = model.predict(teX)

tr_acc = np.mean(trY[:len(teY)] == np.argmax(tr_preds, axis=1))
te_acc = np.mean(teY == np.argmax(te_preds, axis=1))
train_tokens = [[1, 2, 4, 3, 6], [1, 2, 3], [3, 1, 2, 4, 3]]
num_feats = len(set(flatten(train_tokens)))


def get_labels(id):
    if id == 3:
        return [1, 0]
    else:
        return [0, 1]


seq_labels = map(lambda (l): map(get_labels, l), train_tokens)

layers = [
    Embedding(size=128, n_features=num_feats),
    GatedRecurrent(size=128, seq_output=True),
    Dense(size=num_feats, activation='softmax')
]

#iterator = SortedPadded(y_pad=True, y_dtype=intX)
#iterator = SortedPadded(y_dtype=intX)

#model = RNN(layers=layers, cost='seq_cce', iterator=iterator, Y=T.imatrix())
model = RNN(layers=layers, cost='seq_cce')
#model.fit(train_tokens, [1,0,1])
model.fit(train_tokens, train_tokens)

#model.predict(tokenizer.transform(["Frogs are awesome", "frogs are amphibious"]))
model.predict(train_tokens)
save(model, 'save_test.pkl')
model = load('save_test.pkl')
예제 #6
0
def train_and_save_passage_tokenizer_and_rnn_model(x_train,
                                                   y_train,
                                                   x_test,
                                                   character_model=False):
    """Train and save Passage tokenizer and Passage RNN model.

    x_train and x_test should each be a series that's already been pre-preocessed: html->text, lowercase, removed
    punct/#s
    x_train+x_test are used to build the tokenizer.

    Note that character-based RNN is a work-in-progress and not actuallly implemented as of now.
    """

    # Note that we assume we have train/test reviews that had been preprocessed: html->text, lowercased, removed
    # punct/#s

    # Note in https://github.com/IndicoDataSolutions/Passage/blob/master/examples/sentiment.py they only
    # extract text from html, lowercase and strip (no punctuation removal)

    # Tokenization: Assign each word in the reviews an ID to be used in all reviews
    tokenizer = Tokenizer(min_df=10,
                          max_features=100000,
                          character=character_model)

    train_reviews_list = x_train.tolist()
    tokenizer.fit(train_reviews_list + x_test.tolist())

    # Tokenize training reviws (so can use to fit RNN model on)
    train_reviews_tokenized = tokenizer.transform(train_reviews_list)

    # Based on https://github.com/vinhkhuc/kaggle-sentiment-popcorn/blob/master/scripts/passage_nn.py which is based
    # on https://github.com/IndicoDataSolutions/Passage/blob/master/examples/sentiment.py

    # RNN Network:
    # -Each tokenized review will be converted into a sequence of words, where each word has an embedding representation
    # (256)
    # -RNN layer (GRU) attempts to find pattern in sequence of words
    # -Final dense layer is used as a logistic classifier to turn RNN output into a probability/prediction
    if not character_model:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            # May replace with LstmRecurrent for LSTM layer
            GatedRecurrent(size=512,
                           activation='tanh',
                           gate_activation='steeper_sigmoid',
                           init='orthogonal',
                           seq_output=False,
                           p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        # Character-level RNN
        # Idea is to convert character tokenizations into one-hot encodings in which case
        # the embeddings layer is no longer needed
        train_reviews_tokenized = map(
            lambda r_indexes: pd.get_dummies(
                r_indexes, columns=range(tokenizer.n_features + 1)).values,
            train_reviews_tokenized)
        layers = [
            # May replace with LstmRecurrent for LSTM layer
            GatedRecurrent(size=100,
                           activation='tanh',
                           gate_activation='steeper_sigmoid',
                           init='orthogonal',
                           seq_output=False,
                           p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    # RNN classifer uses Binary Cross-Entropy as the cost function
    classifier = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    NUM_EPOCHS = 10
    # 10 epochs may take 10+ hours to run depending on machine
    classifier.fit(train_reviews_tokenized,
                   y_train.tolist(),
                   n_epochs=NUM_EPOCHS)

    # Store model and tokenizer
    if character_model:
        passage.utils.save(classifier, PASSAGE_CHAR_RNN_MODEL)
        _ = joblib.dump(tokenizer, PASSAGE_CHAR_TOKENIZER, compress=9)
    else:
        passage.utils.save(classifier, PASSAGE_RNN_MODEL)
        _ = joblib.dump(tokenizer, PASSAGE_TOKENIZER, compress=9)
from passage.models import RNN
from passage.utils import save, load

print("Loading data...")
num_training = int((1.0 - 0.2) * len(xs))

X_train, y_train, X_test, y_test = xs[:num_training], ys[:num_training], xs[num_training:], ys[num_training:]

num_feats = generator.max_id() + 1

layers = [
    Embedding(size=8, n_features=num_feats),
    #LstmRecurrent(size=32),
    #NOTE - to use a deep RNN, you need all but the final layers with seq_ouput=True
    #GatedRecurrent(size=64, seq_output=True),
    GatedRecurrent(size=64, direction= 'backward' if REVERSE else 'forward'),
    Dense(size=1, activation='sigmoid'),
]

#emd 128, gru 32/64 is good - 0.70006 causer

print("Creating Model")
model = RNN(layers=layers, cost='bce')

def find_cutoff(y_test, predictions):
    scale = 100.0

    min_val = round(min(predictions))
    max_val = round(max(predictions))
    diff = max_val - min_val
    inc = diff / scale