예제 #1
0
 def run_mcmc(self):
     complete = self.chains.check_completness()
     if not complete:
         for i in range(self.nchains):
             self.chains.chains.append(
                 Chain(self.chains.chains_filename, self.covfile, nchain=i, nsteps=self.nsteps))
         pool = Pool(processes=self.nchains)
         try:
             # Without the .get(9999), you can't interrupt this with Ctrl+C.
             pool.map_async(self.mcmc, self.chains.chains).get(999999)
             pool.close()
             pool.join()
             # to skip lines after the progress bars
             print '\n' * self.nchains
         except KeyboardInterrupt:
             pool.terminate()
     self.likelihood = self.chains.chains_to_likelihood()
     self.likelihood.stats(self.covfile)
     # [self.results[i].append(self.likelihood.pdfs[i].mean) for i in range(self.chains.dim)]
     # self.p = [self.likelihood.pdfs[i].mean for i in range(self.chains.dim)]
     self.p = self.chains.best_row_params
     self.simulation(self.spectrum.lambdas, *self.p)
     # [self.results_err[i].append([self.likelihood.pdfs[i].error_high,self.likelihood.pdfs[i].error_low]) for i in range(self.chains.dim)]
     # if(self.plot):
     self.likelihood.triangle_plots()
     self.plot_fit()
     # if convergence_test :
     self.chains.convergence_tests()
     return self.likelihood
예제 #2
0
 def multiproc_map(self, func):
     from pathos.multiprocessing import Pool
     pool = Pool()
     result = List(pool.map(func, self))
     pool.close()
     pool.join()
     return result
예제 #3
0
파일: project.py 프로젝트: xdic/pyem
def main(args):
    dens = EMData(args.map)
    star = parse_star(args.input, keep_index=False)
    star[["ImageNumber", "ImageName"]] = star['rlnImageName'].str.split("@", expand=True)
    grouped = star.groupby("ImageName")
    pool = None
    if args.nproc > 1:
        pool = Pool(processes=args.nproc)
        results = pool.imap(lambda x: project_stack(x, dens, args.dest), (group for name, group in grouped))
    else:
        results = (project_stack(group, dens, args.dest) for name, group in grouped)
    i = 0
    t = 0
    for r in results:
        i += 1
        t += r
        sys.stdout.write("\rProjected %d particles in %d stacks" % (t, i))
        sys.stdout.flush()

    if pool is not None:
        pool.close()
        pool.join()

    sys.stdout.write('\n')
    sys.stdout.flush()

    return 0
    def vw_train_and_test(self, options_list, data_file_paths):
        def init_worker():
            signal.signal(signal.SIGINT, signal.SIG_IGN)

        def run_learner(options):
            train_options = {
                'final_regressor': os.path.join(self.work_dir, id_generator()),
                'data': data_file_paths['train'],
                'cache_file': data_file_paths['train'] + '.cache'
            }
            train_options.update(options)
            test_options = {
                'data': data_file_paths['test'],
                'predictions': os.path.join(self.work_dir, id_generator()),
                'cache_file': data_file_paths['test'] + '.cache'
            }
            test_options.update(options)

            # TO DO: remove below if.
            if 'kill_cache' in options:
                del train_options['kill_cache']
                del test_options['kill_cache']

            vw_wrapper = VW_Wrapper(verbose=False)
            vw_wrapper.train(train_options)
            predictions = vw_wrapper.test(test_options)
            os.remove(train_options['final_regressor'])
            os.remove(test_options['predictions'])
            return options, predictions

        if len(options_list) > 1:
            try:
                if not os.path.isfile(data_file_paths['test'] +
                                      '.cache') or not os.path.isfile(
                                          data_file_paths['train'] + '.cache'):
                    run_learner(options_list[0])
                pool = Pool(len(options_list), init_worker)
                result_list = pool.map_async(run_learner,
                                             options_list).get(99999999)
                pool.close()
                pool.join()
                return result_list
            except KeyboardInterrupt:
                print '  Keyboard Interrupt, exiting...) '
                pool.terminate()
                pool.join()
                sys.exit(0)

        elif len(options_list) == 1:
            return [run_learner(options_list[0])]
        else:
            return []
예제 #5
0
    def create_histograms(self):
        logger.debug('--->Systematics::create_histograms:')
        # collect ROOT objects
        self._root_objects_holder = RootObjects(self._output_file)

        if self._num_threads == 1:
            for systematic in self._systematics:
                logger.debug("---->Create ROOT objects for systematic %s.",
                             systematic.name)
                if logger.getEffectiveLevel() == 10: print '---->Systematics::create_histograms: systematic', systematic.process, systematic._process.estimation_method._friend_directories
                systematic.create_root_objects()
        else:
            logger.debug("Create ROOT objects for all systematics.")

            from pathos.multiprocessing import Pool
            pool = Pool(processes=self._num_threads)

            systematics_new = pool.map(systematic_create_root_objects,
                                       [s for s in self._systematics])
            pool.close()
            pool.join()
            del pool

            # Because the new objects have different addresses in memory,
            # the result objects have to be copied.
            for i_sys in range(len(systematics_new)):
                self._systematics[i_sys] = systematics_new[i_sys]
        logger.debug('-->Create root holders')
        for systematic in self._systematics:
            if self._find_unique_objects:
                self._root_objects_holder.add_unique(systematic.root_objects)
            else:
                self._root_objects_holder.add(systematic.root_objects)
        # self._root_objects_holder.check_duplicates() # TODO: Implement this if needed

        # produce ROOT objects (in parallel)
        logger.debug("Produce ROOT objects using the %s backend.",
                     self._backend)
        logger.debug('-->Produce root with' + self._backend + 'backend')
        if self._backend == "classic":
            self._root_objects_holder.produce_classic(self._num_threads)
        elif self._backend == "tdf":
            self._root_objects_holder.produce_tdf(self._num_threads)
        else:
            logger.fatal("Backend %s is not implemented.", self._backend)
            raise Exception

        # set duplicates to the produced ROOT objects
        logger.debug('--># set duplicates to the produced ROOT objects')
        if self._find_unique_objects:
            self._root_objects_holder.set_duplicates()
예제 #6
0
파일: struc2vec.py 프로젝트: Yelrose/PGL
    def calc_distances_between_nodes(self):
        """
        Use the dtw algorithm to calculate the distance between nodes. 
        """
        from fastdtw import fastdtw
        from pathos.multiprocessing import Pool
        # decide use which algo to use 
        if self.opt1 == True:
            self.distance_calc_func = self.distance_opt1_func
        else:
            self.distance_calc_func = self.distance_func

        dtws = []
        if self.opt2:
            depth = 0
            for node in self.nodes:
                if node in self.degree_list:
                    if depth in self.degree_list[node]:
                        degree = self.degree_list[node][depth]
                        if args.opt1:
                            degree = degree[0][0]
                        else:
                            degree = degree[0]
                    if degree not in self.degree2nodes:
                        self.degree2nodes[degree] = []
                    if node not in self.node2degree:
                        self.node2degree[node] = degree
                    self.degree2nodes[degree].append(node)
            # select the log(n) node to select data 
            degree_keys = self.degree2nodes.keys()
            degree_keys = np.array(list(degree_keys), dtype='int')
            self.degrees_sorted = list(np.sort(degree_keys))
            selected_nbh_nums = 2 * math.log(self.graph.num_nodes - 1, 2)
            self.selected_nbh_nums = selected_nbh_nums

            pool = Pool(10)
            dtws = pool.map(self.calc_node_with_neighbor_dtw_opt2, self.nodes)
            pool.close()
            pool.join()
        else:
            src_indices = range(0, self.graph.num_nodes - 2)

            pool = Pool(10)
            dtws = pool.map(self.calc_node_with_neighbor_dtw, src_indices)
            pool.close()
            pool.join()
        print('calc the dtw done.')
        for dtw in dtws:
            self.distance.update(dtw)
예제 #7
0
파일: preprocess.py 프로젝트: yakzan/ktext
def apply_parallel(data: List[Any], func: Callable) -> List[Any]:
    """
    Apply function to list of elements.

    Automatically determines the chunk size.
    """
    cpu_cores = cpu_count()

    try:
        chunk_size = ceil(len(data) / cpu_cores)
        pool = Pool(cpu_cores)
        transformed_data = pool.map(func,
                                    chunked(data, chunk_size),
                                    chunksize=1)
    finally:
        pool.close()
        pool.join()
        return transformed_data
예제 #8
0
파일: struc2vec.py 프로젝트: Yelrose/PGL
    def random_walk_structual_sim(self):
        """
        According to struct distance to walk the path 
        """
        from pathos.multiprocessing import Pool
        print('start process struc2vec random walk.')
        walks_process_ids = [i for i in range(0, self.num_walks)]
        pool = Pool(10)
        walks = pool.map(self.executor_random_walk, walks_process_ids)
        pool.close()
        pool.join()

        #save the final walk result 
        file_result = open(args.tag + "_walk_path", "w")
        for walk in walks:
            for walk_node in walk:
                walk_node_str = " ".join([str(node) for node in walk_node])
                file_result.write(walk_node_str + "\n")
        file_result.close()
        print('process struc2vec random walk done.')
예제 #9
0
    return i, j, phase_hilb_rc


pool = Pool(NUM_WORKERS)
net.wavelet(1, 'y', pool = pool, cut = 1)

# Hilbert on RC SSA fluctuations
# args = [ (i, j, net.data[:, i, j]) for i in range(net.lats.shape[0]) for j in range(net.lons.shape[0]) ]
# results = pool.map(_hilbert_ssa, args)
# for i, j, res in results:
#     net.phase[:, i, j] = res

net.get_continuous_phase(pool = pool)
net.get_phase_fluctuations(rewrite = True, pool = pool)
pool.close()
pool.join()

# index_correlations = {}
# index_datas = {}

# # SURROGATES
# for index, ndx_type, start_date, end_year in zip(INDICES, DATE_TYPE, START_DATES, END_YEARS):
    # load index
    # print index

    # if index != 'NINO3.4':
index_data = DataField()
raw = np.loadtxt("%sNAO.station.monthly.1865-2016.txt" % (path_to_data))
raw = raw[:, 1:]
index_data.data = raw.reshape(-1)
index_data.create_time_array(date_from = date(1865, 1, 1), sampling = 'm')
예제 #10
0
    def partial_dependence(self, feature_ids, modelinstance, filter_classes=None, grid=None,
                           grid_resolution=30, n_jobs=-1, grid_range=None, sample=True,
                           sampling_strategy='random-choice', n_samples=1000,
                           bin_count=50, samples_per_bin=10, return_metadata=False):

        """
        Approximates the partial dependence of the predict_fn with respect to the
        variables passed.

        Parameters:
        -----------
        feature_ids: list
            the names/ids of the features for which partial dependence is to be computed.
            Note that the algorithm's complexity scales exponentially with additional
            features, so generally one should only look at one or two features at a
            time. These feature ids must be available in the class's associated DataSet.
            As of now, we only support looking at 1 or 2 features at a time.
        modelinstance: skater.model.model.Model subtype
            an estimator function of a fitted model used to derive prediction. Supports
            classification and regression. Supports classification(binary, multi-class) and regression.
            predictions = predict_fn(data)

            Can either by a skater.model.remote.DeployedModel or a
            skater.model.local.InMemoryModel
        filter_classes: array type
            The classes to run partial dependence on. Default None invokes all classes.
            Only used in classification models.
        grid: numpy.ndarray
            2 dimensional array on which we fix values of features. Note this is
            determined automatically if not given based on the percentiles of the
            dataset.
        grid_resolution: int
            how many unique values to include in the grid. If the percentile range
            is 5% to 95%, then that range will be cut into <grid_resolution>
            equally size bins. Defaults to 30.
        n_jobs: int
            The number of CPUs to use to compute the PDs. -1 means 'all CPUs'.
            Defaults to using all cores(-1).
        grid_range: tuple
            the percentile extrama to consider. 2 element tuple, increasing, bounded
            between 0 and 1.
        sample: boolean
            Whether to sample from the original dataset.
        sampling_strategy: string
            If sampling, which approach to take. See DataSet.generate_sample for
            details.
        n_samples: int
            The number of samples to use from the original dataset. Note this is
            only active if sample = True and sampling strategy = 'uniform'. If
            using 'uniform-over-similarity-ranks', use samples per bin
        bin_count: int
            The number of bins to use when using the similarity based sampler. Note
            this is only active if sample = True and
            sampling_strategy = 'uniform-over-similarity-ranks'.
            total samples = bin_count * samples per bin.
        samples_per_bin: int
            The number of samples to collect for each bin within the sampler. Note
            this is only active if sample = True and
            sampling_strategy = 'uniform-over-similarity-ranks'. If using
            sampling_strategy = 'uniform', use n_samples.
            total samples = bin_count * samples per bin.
        return_metadata: boolean

        :Example:
        >>> from skater.model import InMemoryModel
        >>> from skater.core.explanations import Interpretation
        >>> from sklearn.ensemble import RandomForestClassier
        >>> from sklearn.datasets import load_boston
        >>> boston = load_boston()
        >>> X = boston.data
        >>> y = boston.target
        >>> features = boston.feature_names

        >>> rf = RandomForestClassier()
        >>> rf.fit(X,y)


        >>> model = InMemoryModel(rf, examples = X)
        >>> interpreter = Interpretation()
        >>> interpreter.load_data(X)
        >>> feature_ids = ['ZN','CRIM']
        >>> interpreter.partial_dependence.partial_dependence(features,model)
        """

        if self.data_set is None:
            load_data_not_called_err_msg = "self.interpreter.data_set not found. " \
                                           "Please call Interpretation.load_data " \
                                           "before running this method."
            raise(exceptions.DataSetNotLoadedError(load_data_not_called_err_msg))

        feature_ids = self._check_features(feature_ids)

        if filter_classes:
            err_msg = "members of filter classes must be" \
                      "members of modelinstance.classes." \
                      "Expected members of: " \
                      "{0}\n" \
                      "got: " \
                      "{1}".format(modelinstance.target_names,
                                   filter_classes)
            assert all([i in modelinstance.target_names for i in filter_classes]), err_msg

        # TODO: There might be a better place to do this check
        if not isinstance(modelinstance, ModelType):
            raise(exceptions.ModelError("Incorrect estimator function used for computing partial dependence, try one "
                                        "creating one with skater.model.local.InMemoryModel or"
                                        "skater.model.remote.DeployedModel"))

        if modelinstance.model_type == 'classifier' and modelinstance.probability is False:

            if modelinstance.unique_values is None:
                raise(exceptions.ModelError('If using classifier without probability scores, unique_values cannot '
                                            'be None'))
            self.interpreter.logger.warn("Classifiers with probability scores can be explained "
                                         "more granularly than those without scores. If a prediction method with "
                                         "scores is available, use that instead.")

        # TODO: This we can change easily to functional style
        missing_feature_ids = []
        for feature_id in feature_ids:
            if feature_id not in self.data_set.feature_ids:
                missing_feature_ids.append(feature_id)

        if missing_feature_ids:
            missing_feature_id_err_msg = "Features {0} not found in " \
                                         "Interpretation.data_set.feature_ids" \
                                         "{1}".format(missing_feature_ids, self.data_set.feature_ids)
            raise(KeyError(missing_feature_id_err_msg))

        if grid_range is None:
            grid_range = (.05, 0.95)
        else:
            if not hasattr(grid_range, "__iter__"):
                err_msg = "Grid range {} needs to be an iterable".format(grid_range)
                raise(exceptions.MalformedGridRangeError(err_msg))

        self._check_grid_range(grid_range)

        if not modelinstance.has_metadata:
            examples = self.data_set.generate_sample(strategy='random-choice',
                                                     sample=True,
                                                     n_samples_from_dataset=10)
            examples = DataManager(examples, feature_names=self.data_set.feature_ids)
            modelinstance._build_model_metadata(examples)

        # if you dont pass a grid, build one.
        grid = np.array(grid)
        if not grid.any():
            # Currently, if a given feature has fewer unique values than the value
            # of grid resolution, then the grid will be set to those unique values.
            # Otherwise it will take the percentile
            # range according with grid_resolution bins.
            grid = self.data_set.generate_grid(feature_ids,
                                               grid_resolution=grid_resolution,
                                               grid_range=grid_range)
        else:
            # want to ensure all grids have 2 axes
            if len(grid.shape) == 1 and \
                    (StaticTypes.data_types.is_string(grid[0]) or StaticTypes.data_types.is_numeric(grid[0])):
                grid = grid[:, np.newaxis].T
                grid_resolution = grid.shape[1]

        self.interpreter.logger.debug("Grid shape used for pdp: {}".format(grid.shape))
        self.interpreter.logger.debug("Grid resolution for pdp: {}".format(grid_resolution))

        # make sure data_set module is giving us correct data structure
        self._check_grid(grid, feature_ids)

        # generate data
        data_sample = self.data_set.generate_sample(strategy=sampling_strategy,
                                                    sample=sample,
                                                    n_samples_from_dataset=n_samples,
                                                    samples_per_bin=samples_per_bin,
                                                    bin_count=bin_count)

        _pdp_metadata = self._build_metadata_dict(modelinstance, feature_ids, self.data_set.feature_ids, filter_classes)

        self.interpreter.logger.debug("Shape of sampled data: {}".format(data_sample.shape))
        self.interpreter.logger.debug("Feature Ids: {}".format(feature_ids))
        self.interpreter.logger.debug("PD metadata: {}".format(_pdp_metadata))

        # cartesian product of grid
        grid_expanded = pd.DataFrame(list(product(*grid))).values

        if grid_expanded.shape[0] <= 0:
            empty_grid_expanded_err_msg = "Must have at least 1 pdp value" \
                                          "grid shape: {}".format(grid_expanded.shape)
            raise(exceptions.MalformedGridError(empty_grid_expanded_err_msg))

        predict_fn = modelinstance._get_static_predictor()

        n_jobs = None if n_jobs < 0 else n_jobs
        pd_func = functools.partial(_compute_pd,
                                    estimator_fn=predict_fn,
                                    grid_expanded=grid_expanded,
                                    pd_metadata=_pdp_metadata,
                                    input_data=data_sample,
                                    filter_classes=filter_classes)
        arg_list = [i for i in range(grid_expanded.shape[0])]
        executor_instance = Pool(n_jobs)
        try:
            pd_list = executor_instance.map(pd_func, arg_list)
        except:
            self.interpreter.logger.debug("Multiprocessing failed, going single process")
            pd_list = map(pd_func, arg_list)
        finally:
            executor_instance.close()
            executor_instance.join()
            executor_instance.terminate()
        if return_metadata:
            return pd.DataFrame(list(pd_list)), _pdp_metadata
        else:
            return pd.DataFrame(list(pd_list))
예제 #11
0
    def learnMulti(self, gn, top_n=5):
        """
		Learn using multiprocessing

		gn: initial grammar
		top_n: save the best top_n grammars
		"""

        # settings
        max_process = cpu_count(
        )  # processes to run in parallel; or use cpu_count()

        pool = Pool(max_process)
        P_LOCK = Manager().Lock()  # mutex lock for printing
        gidCounter = 0
        results = []
        gList = [gn]
        gnBest = [deepcopy(gn)]
        bestmdl_last = gn.mdl  # best MDL on the upper level nodes

        # uncomment this for debugging
        #history_pri_lik= set() # history of prior & likelihood values

        while len(gList) > 0:
            gn = gList.pop(0)  # grammar node to be expanded
            self.printMsg(
                1, '>> gList size: %d, bestMDL: %.3f (#%d)' %
                (len(gList), gnBest[0].mdl, gnBest[0].gid))

            # substitute if possible
            ntlist = self.getFirstDLThack(gn.dlt)
            if len(ntlist) > 0:
                self.printMsg(2,
                              '>> Possible substitutions on #%d:' % (gn.gid),
                              ntlist)
                while len(ntlist) > 0:
                    gidCounter += 1
                    argList = [gn, ntlist.pop(), gidCounter, P_LOCK]
                    results.append(
                        pool.apply_async(self.substituteMulti, [argList]))
            else:
                self.printMsg(
                    2, '>> No more SUBSTITUTE possible on #%d\n' % gn.gid)

            # merge if possible
            ntlist = self.mergeSet(gn.g)
            if len(ntlist) > 0:
                self.printMsg(2, '>> Possible merges on #%d:' % (gn.gid),
                              ntlist)
                while len(ntlist) > 0:
                    gidCounter += 1
                    argList = [gn, ntlist.pop(), gidCounter, P_LOCK]
                    results.append(pool.apply_async(self.mergeMulti,
                                                    [argList]))
            else:
                self.printMsg(2,
                              '>> No more MERGE possible on #%d.\n' % gn.gid)

            del gn
            delList = []
            bestmdl = bestmdl_last

            # search next level in the search tree
            while len(results) >= 1:
                time.sleep(0.001)  # avoid wasting resource
                for r in range(len(results)):
                    if results[r].ready():
                        delList.append(r)
                        gn_new = results[r].get()

                        # uncomment for debugging
                        #if gn_new.lik < self.max_mdl:
                        #	history_pri_lik.add((gn_new.pri,gn_new.lik))

                        # save the best-N grammars
                        if len(gnBest) < top_n:
                            gnBest.append(gn_new)
                            gnBest = sorted(gnBest, key=lambda gn: gn.mdl)
                        elif gn_new.mdl < gnBest[-1].mdl:
                            del gnBest[-1]
                            gnBest.append(deepcopy(gn_new))
                            gnBest = sorted(gnBest, key=lambda gn: gn.mdl)

                        # save this level's best mdl
                        if gn_new.mdl < bestmdl:
                            bestmdl = gn_new.mdl

                        # beam search: compare with the best mdl on the upper level
                        if gn_new.mdl >= bestmdl_last:
                            gn_new.worse += 1
                        if gn_new.worse < BEAMSIZE:
                            gList.append(gn_new)
                        else:
                            del gn_new

                delList.sort()
                for d in range(len(delList)):
                    del results[delList.pop()]
            bestmdl_last = bestmdl

        pool.close()
        pool.join()

        return gnBest
                           'air',
                           date(1950, 1, 1),
                           date(2016, 1, 1),
                           None,
                           None,
                           None,
                           'monthly',
                           anom=False)
pool = Pool(20)
net.wavelet(1, 'y', pool=pool, cut=1)
net.get_continuous_phase(pool=pool)
print "wavelet done"
net.get_phase_fluctuations(rewrite=True, pool=pool)
print "fluctuations done"
pool.close()
pool.join()
net.phase_fluctuations -= np.nanmean(net.phase_fluctuations, axis=0)
net.get_adjacency_matrix(net.phase_fluctuations,
                         method="L2",
                         pool=None,
                         use_queue=True,
                         num_workers=20)
net.save_net('networks/NCEP-SATannual-phase-fluctuations-adjmatL2.bin',
             only_matrix=True)
print "L2 done"

## PHASE FLUCTUATIONS NETWORK correlation
print "Computing MI knn..."
net = ScaleSpecificNetwork(fname,
                           'air',
                           date(1950, 1, 1),
예제 #13
0
def main(options):
    """
    Projection subtraction program entry point.
    :param options: Command-line arguments parsed by ArgumentParser.parse_args()
    :return: Exit status
    """
    rchop = lambda x, y: x if not x.endswith(y) or len(y) == 0 else x[:-len(y)]
    options.output = rchop(options.output, ".star")
    options.suffix = rchop(options.suffix, ".mrc")
    options.suffix = rchop(options.suffix, ".mrcs")

    star = StarFile(options.input)
    npart = len(star['rlnImageName'])

    sub_dens = EMData(options.submap)

    if options.wholemap is not None:
        dens = EMData(options.wholemap)
    else:
        print "Reference map is required."
        return 1

    # Write star header for output.star.
    top_header = "\ndata_\n\nloop_\n"
    headings = star.keys()
    output_star = open("{0}.star".format(options.output), 'w')

    output_star.write(top_header)
    for i, heading in enumerate(headings):
        output_star.write("_{0} #{1}\n".format(heading, i + 1))

    if options.recenter:  # Compute difference vector between new and old mass centers.
        if options.wholemap is None:
            print "Reference map required for recentering."
            return 1

        new_dens = dens - sub_dens
        # Note the sign of the shift in coordinate frame is opposite the shift in the CoM.
        recenter = Vec3f(*dens.phase_cog()[:3]) - Vec3f(
            *new_dens.phase_cog()[:3])
    else:
        recenter = None

    pool = None
    if options.nproc > 1:  # Compute subtraction in parallel.
        pool = Pool(processes=options.nproc)
        results = pool.imap(
            lambda x: subtract(x,
                               dens,
                               sub_dens,
                               recenter=recenter,
                               no_frc=options.no_frc,
                               low_cutoff=options.low_cutoff,
                               high_cutoff=options.high_cutoff),
            particles(star),
            chunksize=min(npart / options.nproc, options.maxchunk))
    else:  # Use serial generator.
        results = (subtract(x,
                            dens,
                            sub_dens,
                            recenter=recenter,
                            no_frc=options.no_frc,
                            low_cutoff=options.low_cutoff,
                            high_cutoff=options.high_cutoff)
                   for x in particles(star))

    # Write subtraction results to .mrcs and .star files.
    i = 0
    nfile = 1
    starpath = None
    mrcs = None
    mrcs_orig = None
    for r in results:
        if i % options.maxpart == 0:
            mrcsuffix = options.suffix + "_%d" % nfile
            nfile += 1
            starpath = "{0}.mrcs".format(
                os.path.sep.join(
                    os.path.relpath(mrcsuffix,
                                    options.output).split(os.path.sep)[1:]))
            mrcs = "{0}.mrcs".format(mrcsuffix)
            mrcs_orig = "{0}_original.mrcs".format(mrcsuffix)
            if os.path.exists(mrcs):
                os.remove(mrcs)
            if os.path.exists(mrcs_orig):
                os.remove(mrcs_orig)

        r.ptcl_norm_sub.append_image(mrcs)

        if options.original:
            r.ptcl.append_image(mrcs_orig)

        if logger.getEffectiveLevel(
        ) == logging.DEBUG:  # Write additional debug output.
            ptcl_sub_img = r.ptcl.process("math.sub.optimal", {
                "ref": r.ctfproj,
                "actual": r.ctfproj_sub,
                "return_subim": True
            })
            ptcl_lowpass = r.ptcl.process("filter.lowpass.gauss", {
                "apix": 1.22,
                "cutoff_freq": 0.05
            })
            ptcl_sub_lowpass = r.ptcl_norm_sub.process("filter.lowpass.gauss",
                                                       {
                                                           "apix": 1.22,
                                                           "cutoff_freq": 0.05
                                                       })
            ptcl_sub_img.write_image("poreclass_subimg.mrcs", -1)
            ptcl_lowpass.write_image("poreclass_lowpass.mrcs", -1)
            ptcl_sub_lowpass.write_image("poreclass_sublowpass.mrcs", -1)
            r.ctfproj.write_image("poreclass_ctfproj.mrcs", -1)
            r.ctfproj_sub.write_image("poreclass_ctfprojsub.mrcs", -1)

        assert r.meta.i == i  # Assert particle order is preserved.
        star['rlnImageName'][i] = "{0:06d}@{1}".format(
            i % options.maxpart + 1, starpath)  # Set new image name.
        r.meta.update(star)  # Update StarFile with altered fields.
        line = '  '.join(str(star[key][i]) for key in headings)
        output_star.write("{0}\n".format(line))
        i += 1

    output_star.close()

    if pool is not None:
        pool.close()
        pool.join()

    return 0